请输入您要查询的字词:

 

单词 GeneralizedRiemannLebesgueLemma
释义

generalized Riemann-Lebesgue lemma


Generalized Riemann-Lebesgue lemmaFernando Sanz Gamiz

Lemma 1.

Let h:RC be a bounded measurable functionMathworldPlanetmath.If h satisfies the averaging condition

limc+1c0ch(t)𝑑t=0

then

limωabf(t)h(ωt)𝑑t=0

with -<a<b<+ for any fL1[a,b]

Proof.

Obviously we only need to prove the lemma when both h and f arereal and 0=a<b<.

Let 𝟏[a,b] be the indicator functionPlanetmathPlanetmath of theinterval [a,b]. Then

limω0b𝟏[a,b]h(ωt)𝑑t=limω1ω0ωbh(t)𝑑t=0

by the hypothesisMathworldPlanetmath. Hence, the lemma is valid for indicators,therefore for step functionsPlanetmathPlanetmath.

Now let C be a bound for h and choose ϵ >0.As step functions are dense in L1, we can find, for any fL1[a,b], a step function g such that f-g1<ϵ,therefore

limω|abf(t)h(ωt)𝑑t|limωab|f(t)-g(t)||h(ωt)|𝑑t+limω|abg(t)h(ωt)𝑑t|
limωCf-g1<Cϵ

because limω|abg(t)h(ωt)𝑑t|=0 by what we have proved for stepfunctions. Since ϵ is arbitrary, we are done.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 2:23:21