请输入您要查询的字词:

 

单词 GeneratingFunctionOfHermitePolynomials
释义

generating function of Hermite polynomials


We start from the definition of Hermite polynomialsDlmfDlmfDlmfMathworldPlanetmath via their http://planetmath.org/node/11983Rodrigues formulaPlanetmathPlanetmath

Hn(z):=(-1)nez2dndzne-z2  (n= 0, 1, 2,).(1)

The consequence

f(n)(z)=n!2πiCf(ζ)(ζ-z)n+1𝑑ζ(2)

of http://planetmath.org/node/1150Cauchy integral formulaPlanetmathPlanetmath allows to write (1) as the complex integral

Hn(z)=(-1)nn!2iπCez2-ζ2(ζ-z)n+1𝑑ζ,

where C is any contour around the point z and the direction is anticlockwise.  The http://planetmath.org/node/11373substitution  z-ζ:=t  here yields

Hn(z)=n!2iπCez2-(z-t)2tn+1𝑑t,

where the contour C goes round the origin.  Accordingly, by (2) we can infer that

Hn(z)=[dndtnez2-(z-t)2]t=0,

whence we have found the generating function

ez2-(z-t)2=n=0Hn(z)tnn!

of the Hermite polynomials.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 5:07:21