请输入您要查询的字词:

 

单词 GeneratorForTheMutiplicativeGroupOfAField
释义

generator for the mutiplicative group of a field


Proposition 1

The multiplicative groupMathworldPlanetmath K* of a finite fieldMathworldPlanetmath K is cyclic.

Theorem 3.1 in the finite fields (http://planetmath.org/FiniteField) entry provesthis propositionPlanetmathPlanetmath along with a more general result:

Proposition 2

If for every natural numberMathworldPlanetmath d, the equation xd=1 has at most d solutions in a finite groupMathworldPlanetmath G then G is cyclic. Equivalently, for any positive divisorMathworldPlanetmathPlanetmath d of |G|.

This last proposition implies that every finite subgroup of the multiplicative group of a field (finite or not) is cyclic.
We will give an alternative constructive proofMathworldPlanetmath of Proposition 1:
We first factorize q-1=i=1npiei. There exists an element yi in K* such that yi is not root of x(q-1)/pi-1, since the polynomialPlanetmathPlanetmath has degree less than q-1 . Let zi=yi(q-1)/piei. We note that zi has order piei. In fact zipiei=1 and zipiei-1=yi(q-1)/pi1.
Finally we choose the element z=i=1nzi. By the Theorem 1 here (http://planetmath.org/OrderOfElementsInFiniteGroups), we obtain that the order of z is q-1 i.e. z is a generatorPlanetmathPlanetmathPlanetmath of the cyclic groupMathworldPlanetmath K*.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:41:05