请输入您要查询的字词:

 

单词 Globularomegagroupoid
释义

globular ω-groupoid


Definition 0.1.

An ω-groupoidPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath has a distinct meaning from that of ω-categoryMathworldPlanetmath, although certain authors restrict its definition to the latter by adding the restrictionPlanetmathPlanetmath of invertible morphismsMathworldPlanetmath, and thus also assimilate the ω-groupoid with the -groupoid. Ronald Brown and Higgins showed in 1981 that -groupoids and crossed complexes are equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath. Subsequently,in 1987, these authors introduced the tensor productsPlanetmathPlanetmath and homotopiesMathworldPlanetmathPlanetmath for ω-groupoids and crossed complexes. “It is because the geometry of convex sets is so much more complicated in dimensionsMathworldPlanetmathPlanetmath >1 than in dimension 1 that new complications emerge for the theories of higher order group theory and of higher homotopy groupoids.”

However, in order to introduce a precise and useful definition of globular ω-groupoids one needs to define first the n-globe Gn which is the subspaceMathworldPlanetmath of an EuclideanPlanetmathPlanetmath n-space Rn of points x such that that their norm||x||1, but with the cell structureMathworldPlanetmath for n1 specified in SectionPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath 1 of R. Brown (2007). Also, one needs to consider a filtered space that is defined as a compactly generated space X and a sequencePlanetmathPlanetmath of subspaces X*. Then, the n-globe Gn has a skeletal filtrationPlanetmathPlanetmath giving a filtered space Gn*.

Thus, a fundamental globular ω-groupoid of a filtered (topological) space is defined by using an n-globe with its skeletal filtration (R. Brown, 2007 available from: arXiv:math/0702677v1 [math.AT]). This is analogous to the fundamental cubical omega–groupoid of Ronald Brown and Philip Higgins (1981a-c) that relates the construction to the fundamental crossed complex of a filtered space. Thus, as shown in R. Brown (2007: http://arxiv.org/abs/math/0702677), the crossed complex associated to the free globular omega-groupoid on one element of dimension n is the fundamental crossed complex of the n-globe.

more to come… entry in progress

Remark 0.1.

An important reason for studying n–categories, and especiallyn-groupoids, is to use them as coefficient objects for non-Abelian Cohomology theories. Thus, some double groupoidsPlanetmathPlanetmathPlanetmath defined over Hausdorff spaces that are non-AbelianMathworldPlanetmathPlanetmath (or non-commutative) are relevant to non-Abelian Algebraic Topology (NAAT) and http://planetphysics.org/?op=getobj&from=lec&id=61NAQAT (or NA-QAT).

Furthermore, whereas the definition of an n-groupoid is a straightforward generalizationPlanetmathPlanetmath of a 2-groupoid, the notion of a multiple groupoid is not at all an obvious generalization or extensionPlanetmathPlanetmathPlanetmath of the concept of double groupoid.

References

  • 1 Brown, R. and Higgins, P.J. (1981). The algebraPlanetmathPlanetmath of cubes. J. Pure Appl. Alg. 21 : 233–260.
  • 2 Brown, R. and Higgins, P. J. ColimitMathworldPlanetmath theorems for relative homotopy groups. J.Pure Appl. Algebra 22 (1) (1981) 11–41.
  • 3 Brown, R. and Higgins, P. J. The equivalence of -groupoids and crossed complexes. Cahiers Topologie Géom. Différentielle 22 (4) (1981) 371–386.
  • 4 Brown, R., Higgins, P. J. and R. Sivera,: 2011. “Non-Abelian Algebraic Topology”, EMS Publication.
    http://www.bangor.ac.uk/ mas010/nonab-a-t.html ;
    http://www.bangor.ac.uk/ mas010/nonab-t/partI010604.pdf
  • 5 Brown, R. and G. Janelidze: 2004. Galois theory and a new homotopy double groupoidPlanetmathPlanetmath of a map of spaces, Applied Categorical Structures 12: 63-80.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 4:41:20