请输入您要查询的字词:

 

单词 GrassmannHopfAlgebrasAndCoalgebrasgebras
释义

Grassmann-Hopf algebras and coalgebras


0.1 Definitions of Grassmann-Hopf Al/gebras, Their Dual
Co-Algebras, and Grassmann–Hopf Al/gebroids

Let V be a (complex) vector spaceMathworldPlanetmath, dim𝒞V=n, and let {e0,e1,,} with identityPlanetmathPlanetmathPlanetmathPlanetmath e01, be the generatorsPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath of a Grassmann (exterior) algebraPlanetmathPlanetmathPlanetmath

Λ*V=Λ0VΛ1VΛ2V(0.1)

subject to the relationMathworldPlanetmathPlanetmath eiej+ejei=0 . Following Fauser(2004) we append this algebra with a Hopf structureMathworldPlanetmath to obtain a‘co–gebra’ based on the interchange (or ‘tangled duality’):

(objects/points𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠)(𝑚𝑜𝑟𝑝ℎ𝑖𝑠𝑚𝑠objects/points.)

This leads to a tangle duality between an associative (unital algebra)𝒜=(A,m), and an associative (unital) ‘co–gebra’ 𝒞=(C,Δ) :

  • i

    the binary productPlanetmathPlanetmathPlanetmath AA𝑚A, and

  • ii

    the coproductMathworldPlanetmath CΔCC

,where the Sweedler notation (Sweedler, 1996), with respect to anarbitrary basis is adopted:

Δ(x)=rarbr=(x)x(1)x(2)=x(1)x(2)
Δ(xi)=iΔijk=(r)a(r)jb(r)k=x(1)x(2)

Here the Δijk are called ‘sectionPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath coefficients’. We have then a generalizationPlanetmathPlanetmath of associativity to coassociativity:

CΔCCΔidΔCCΔidCCC(0.2)

inducing a tangled duality between an associative (unital algebra𝒜=(A,m), and an associative (unital) ‘co–gebra’𝒞=(C,Δ) . The idea is to take this structureand combine the Grassmann algebra (Λ*V,) with the‘co-gebra’ (Λ*V,Δ) (the ‘tangled dual’)along with the Hopf algebraPlanetmathPlanetmathPlanetmath compatibility rules: 1) the productand the unit are ‘co–gebra’ morphismsMathworldPlanetmath, and 2) the coproduct andcounit are algebra morphisms.

Next we consider the following ingredients:

  • (1)

    the graded switch τ^(AB)=(-1)ABBA

  • (2)

    the counit ε (an algebra morphism) satisfying(εid)Δ=id=(idε)Δ

  • (3)

    the antipode S .

The Grassmann-Hopf algebra H^ thus consists of–is defined by– theseptet H^=(Λ*V,,id,ε,τ^,S).

Its generalization to a Grassmann-Hopf algebroid isstraightforward by considering a groupoidPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath 𝖦, and thendefining a H-𝐴𝑙𝑔𝑒𝑏𝑟𝑜𝑖𝑑 as aquadruple (GH,Δ,ε,S) by modifying the Hopfalgebroid definition so thatH^=(Λ*V,,id,ε,τ^,S) satisfies the standardGrassmann-Hopf algebra axioms stated above. We may also say that(HG,Δ,ε,S) is a weak C*-Grassmann-Hopfalgebroid when H is a unital C*-algebra (with 𝟏).We thus set 𝔽=. Note howeverthat the tangled-duals of Grassman-Hopf algebroids retain both theintuitive interactions and the dynamic diagram advantages of theirphysical, extended symmetryPlanetmathPlanetmathPlanetmath representationsPlanetmathPlanetmath exhibited by theGrassman-Hopf al/gebras and co-gebras over those of either weakC*- Hopf algebroids or weak Hopf C*- algebras.

References

  • 1 E. M. Alfsen and F. W. Schultz: Geometry of State Spaces of Operator Algebras, Birkhäuser, Boston–Basel–Berlin (2003).
  • 2 I. Baianu : Categories, FunctorsMathworldPlanetmath and Automata Theory: A Novel Approach to Quantum Automata through Algebraic–Topological Quantum Computations., Proceed. 4th Intl. Congress LMPS, (August-Sept. 1971).
  • 3 I. C. Baianu, J. F. Glazebrook and R. Brown.: A Non–AbelianMathworldPlanetmathPlanetmath, Categorical Ontology of Spacetimes and Quantum Gravity., Axiomathes 17,(3-4): 353-408(2007).
  • 4 I.C.Baianu, R. Brown J.F. Glazebrook, and G. Georgescu, Towards Quantum Non–Abelian Algebraic Topology, (2008).
  • 5 F.A. Bais, B. J. Schroers and J. K. Slingerland: Broken quantum symmetry and confinement phases in planar physics, Phys. Rev. Lett. 89 No. 18 (1–4): 181–201 (2002).
  • 6 J.W. Barrett.: Geometrical measurements in three-dimensional quantum gravity.Proceedings of the Tenth Oporto Meeting on Geometry, Topology and Physics (2001).Intl. J. Modern Phys. A 18 , October, suppl., 97–113 (2003)
  • 7 M. Chaician and A. Demichev: Introduction to Quantum GroupsPlanetmathPlanetmathPlanetmathPlanetmath, World Scientific (1996).
  • 8 Coleman and De Luccia: Gravitational effects on and of vacuum decay., Phys. Rev. D 21: 3305 (1980).
  • 9 L. Crane and I.B. Frenkel. Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. Topology and physics. J. Math. Phys. 35 (no. 10): 5136–5154 (1994).
  • 10 W. Drechsler and P. A. Tuckey: On quantum and parallel transport in a Hilbert bundle over spacetime., Classical and Quantum Gravity, 13:611-632 (1996).doi: 10.1088/0264–9381/13/4/004
  • 11 V. G. Drinfel’d: Quantum groups, In Proc. Int. Congress ofMathematicians, Berkeley, 1986, (ed. A. Gleason), Berkeley, 798-820 (1987).
  • 12 G. J. Ellis: Higher dimensional crossed modules of algebras,J. of Pure Appl. Algebra 52: 277-282 (1988), .
  • 13 P.. I. Etingof and A. N. Varchenko, Solutions of the Quantum Dynamical Yang-Baxter Equation and Dynamical Quantum Groups, Comm.Math.Phys., 196: 591-640 (1998).
  • 14 P. I. Etingof and A. N. Varchenko: Exchange dynamical quantumgroups, Commun. Math. Phys. 205 (1): 19-52 (1999)
  • 15 P. I. Etingof and O. Schiffmann: Lectures on the dynamical Yang–Baxter equations, in Quantum Groups and Lie Theory (Durham, 1999), pp. 89-129, Cambridge University Press, Cambridge, 2001.
  • 16 B. Fauser: A treatise on quantum Clifford AlgebrasPlanetmathPlanetmath. Konstanz,Habilitationsschrift.
    arXiv.math.QA/0202059 (2002).
  • 17 B. Fauser: Grade Free productMathworldPlanetmath Formulae from Grassmann–Hopf Gebras.Ch. 18 in R. Ablamowicz, Ed., Clifford Algebras: Applications to Mathematics, Physics and Engineering, Birkhäuser: Boston, Basel and Berlin, (2004).
  • 18 J. M. G. Fell.: The Dual SpacesPlanetmathPlanetmath of C*–Algebras., Transactions of the AmericanMathematical Society, 94: 365–403 (1960).
  • 19 F.M. Fernandez and E. A. Castro.: (Lie) Algebraic Methods in Quantum Chemistry and Physics., Boca Raton: CRC Press, Inc (1996).
  • 20 R. P. Feynman: Space–Time Approach to Non–Relativistic Quantum Mechanics, Reviewsof Modern Physics, 20: 367–387 (1948). [It is also reprinted in (Schwinger 1958).]
  • 21 A. Fröhlich: Non-AbelianMathworldPlanetmathPlanetmath Homological Algebra. I.Derived functorsMathworldPlanetmath and satellites.,Proc. London Math. Soc., 11(3): 239–252 (1961).
  • 22 R. Gilmore: Lie Groups, Lie Algebras and Some of Their Applications.,Dover Publs., Inc.: Mineola and New York, 2005.
  • 23 P. Hahn: Haar measure for measure groupoids., Trans. Amer. Math. Soc. 242: 1–33(1978).
  • 24 P. Hahn: The regular representationsPlanetmathPlanetmath of measure groupoids., Trans. Amer. Math. Soc. 242:34–72(1978).
  • 25 R. Heynman and S. Lifschitz. 1958. Lie Groups and Lie Algebras., New York and London: Nelson Press.
  • 26 C. Heunen, N. P. Landsman, B. Spitters.: A topos for algebraic quantum theoryPlanetmathPlanetmath, (2008)
    arXiv:0709.4364v2 [quant–ph]
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 22:37:57