请输入您要查询的字词:

 

单词 HamiltonianAlgebroids
释义

Hamiltonian algebroids


0.1 Introduction

Hamiltonian algebroids are generalizationsPlanetmathPlanetmath of the Lie algebrasMathworldPlanetmath of canonical transformations, but cannot be considered just a special case of Lie algebroids. They are instead a special case of a http://planetphysics.org/encyclopedia/QuantumAlgebroid.htmlquantum algebroid.

Definition 0.1.

Let X and Y be two vector fields on a smooth manifold M, represented here as operators acting on functions.Their commutatorMathworldPlanetmathPlanetmath, or Lie bracket, L, is :

[X,Y](f)=X(Y(f))-Y(X(f)).

Moreover, consider the classical configuration space Q=3 of a classical, mechanical system, or particle whose phase space is the cotangent bundle T*36, for which the space of (classical)observables is taken to be the real vector space of smooth functions on M, and with T being an elementof a Jordan-Lie (Poisson) algebraMathworldPlanetmathPlanetmathPlanetmath (http://planetmath.org/JordanBanachAndJordanLieAlgebras) whose definition is also recalled next. Thus, one defines as in classical dynamics the Poisson algebra as a Jordan algebraMathworldPlanetmathPlanetmath in which is associative. We recall that one needs to consider first a specific algebra (defined as a vector spaceMathworldPlanetmath E over a ground field (typically or )) equipped with a bilinearPlanetmathPlanetmath and distributive multiplication  . Then one defines a Jordan algebra (over ), as a a specific algebra over for which:

ST=TS,S(TS2)=(ST)S2,,

for all elements S,T of this algebra.

Then, the usual algebraic types of morphisms automorphismPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath, isomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath, etc.) apply to aJordan-Lie (Poisson) algebra (http://planetmath.org/JordanBanachAndJordanLieAlgebras) defined as a real vector space U together with a Jordan product and Poisson bracket

{,}, satisfying :

  • 1.

    for all S,TU,

    ST=TS{S,T}=-{T,S}

  • 2.

    the Leibniz rule holds

    {S,TW}={S,T}W+T{S,W}

    for all S,T,WU, along with

  • 3.

    the Jacobi identityMathworldPlanetmath :

    {S,{T,W}}={{S,T},W}+{T,{S,W}}
  • 4.

    for some 2, there is the associatorMathworldPlanetmath identityPlanetmathPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath  :

    (ST)W-S(TW)=142{{S,W},T}.

Thus, the canonical transformations of the Poisson sigma model phase space specified by the Jordan-Lie (Poisson) algebra (http://planetmath.org/JordanBanachAndJordanLieAlgebras) (also Poisson algebra), which is determined by both the Poisson bracket and the Jordan product , define a Hamiltonian algebroid with the Lie brackets L related to such a Poisson structureMathworldPlanetmath on the target space.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:49:22