请输入您要查询的字词:

 

单词 Polyomino
释义

Polyomino

A generalization of the Domino. An -omino is defined as a collection of squares of equal size arranged withcoincident sides. Free polyominoes can be picked up and flipped, so mirror image pieces are considered identical,whereas Fixed polyominoes are distinct if they have different chirality or orientation. Fixed polyominoes are alsocalled Lattice Animals.


Redelmeier (1981) computed the number of Free and Fixed polyominoes for , and Mertens (1990) gives a simplecomputer program. The sequence giving the number of A000105, Ball and Coxeter1987) is shown in the second column below, and that for A014559). Thenumber of possible holes is shown in the fourth column (Sloane's A001419).

FreeFixedPos. Holes
1110
2120
3260
45190
512630
6352160
71087601
836927256
91285991037
10465539446195
1117073135268
1263600505861
132385911903890
149019717204874
15342657627394666
1613079255104592937
1750107909400795844
181926220521540820542
197426242325940738676
20287067195022964779660
211112306067888983512783
2243191857688345532572678
231680470077281344372335524
246549997004035239988770268

The best currently known bounds on the number of -polyominoes are


(Eden 1961, Klarner 1967, Klarner and Rivest 1973, Ball and Coxeter 1987).For , the quartominoes are called Straight, L,T, Square, and Skew. For , thepentominoes are called , , , , , , , , , , , and (Golomb 1995).

See also Domino, Hexomino, Monomino, Pentomino, Polyabolo, Polycube,Polyhex, Polyiamond, Polyking, Polyplet, Tetromino, Triomino


References

Polyominoes

Atkin, A. O. L. and Birch, B. J. (Eds.). Computers in Number Theory: Proc. Sci. Research Council Atlas Symposium No. 2 Held at Oxford from 18-23 Aug., 1969. New York: Academic Press, 1971.

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 109-113, 1987.

Beeler, M.; Gosper, R. W.; and Schroeppel, R. Item 77 in HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, pp. 48-50, Feb. 1972.

Eden, M. ``A Two-Dimensional Growth Process.'' Proc. Fourth Berkeley Symposium Math. Statistics and Probability, Held at the Statistical Laboratory, University of California, June 30-July 30, 1960. Berkeley, CA: University of California Press, pp. 223-239, 1961.

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/rndprc/rndprc.html

Gardner, M. ``Polyominoes and Fault-Free Rectangles.'' Ch. 13 in Martin Gardner's New Mathematical Diversions from Scientific American. New York: Simon and Schuster, 1966.

Gardner, M. ``Polyominoes and Rectification.'' Ch. 13 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 172-187, 1978.

Golomb, S. W. ``Checker Boards and Polyominoes.'' Amer. Math. Monthly 61, 675-682, 1954.

Golomb, S. W. Polyominoes: Puzzles, Patterns, Problems, and Packings, rev. enl. 2nd ed. Princeton, NJ: Princeton University Press, 1995.

Klarner, D. A. ``Cell Growth Problems.'' Can. J. Math. 19, 851-863, 1967.

Klarner, D. A. and Riverst, R. ``A Procedure for Improving the Upper Bound for the Number of -ominoes.'' Can. J. Math. 25, 585-602, 1973.

Lei, A. ``Bigger Polyominoes.'' http://www.cs.ust.hk/~philipl/omino/bigpolyo.html.

Lei, A. ``Polyominoes.'' http://www.cs.ust.hk/~philipl/omino/omino.html.

Lunnon, W. F. ``Counting Polyominoes.'' In Computers in Number Theory (Ed. A. O. L. Atkin and B. J. Brich). London: Academic Press, pp. 347-372, 1971.

Martin, G. Polyominoes: A Guide to Puzzles and Problems in Tiling. Washington, DC: Math. Assoc. Amer., 1991.

Mertens, S. ``Lattice Animals--A Fast Enumeration Algorithm and New Perimeter Polynomials.'' J. Stat. Phys. 58, 1095-1108, 1990.

Read, R. C. ``Contributions to the Cell Growth Problem.'' Canad. J. Math. 14, 1-20, 1962.

Redelmeier, D. H. ``Counting Polyominoes: Yet Another Attack.'' Discrete Math. 36, 191-203, 1981.

Ruskey, F. ``Information on Polyominoes.'' http://sue.csc.uvic.ca/~cos/inf/misc/PolyominoInfo.html.

Sloane, N. J. A. SequencesA014559,A000105/M1425, andA001419/M4226,in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

von Seggern, D. CRC Standard Curves and Surfaces. Boca Raton, FL: CRC Press, pp. 342-343, 1993.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 2:17:26