单词 | Riemannian Geometry |
释义 | Riemannian GeometryThe study of Manifolds having a complete Riemannian Metric. Riemannian geometry is a general space based on the Line Element ![]() with ![]() ![]() ![]() ![]() ![]() ![]() (Chern 1996). If this restriction is dropped, the resulting geometry is called Finsler Geometry.
Besson, G.; Lohkamp, J.; Pansu, P.; and Petersen, P. Riemannian Geometry. Providence, RI: Amer. Math. Soc., 1996. Buser, P. Geometry and Spectra of Compact Riemann Surfaces. Boston, MA: Birkhäuser, 1992. Chavel, I. Eigenvalues in Riemannian Geometry. New York: Academic Press, 1984. Chavel, I. Riemannian Geometry: A Modern Introduction. New York: Cambridge University Press, 1994. Chern, S.-S. ``Finsler Geometry is Just Riemannian Geometry without the Quadratic Restriction.'' Not. Amer. Math. Soc. 43, 959-963, 1996. do Carmo, M. P. Riemannian Geometry. Boston, MA: Birkhäuser, 1992. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。