单词 | Roman Surface | ||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Roman SurfaceA Quartic Nonorientable Surface, also known as the Steiner Surface. The Romansurface is one of the three possible surfaces obtained by sewing a Möbius Strip to the edge of aDisk. The other two are the Boy Surface and Cross-Cap, all of which are homeomorphic to theReal Projective Plane (Pinkall 1986). The center point of the Roman surface is an ordinary Triple Point with The Roman surface can given by the equation
![]()
in the former gives
for ![]() ![]() ![]() ![]() ![]() A Homotopy (smooth deformation) between the Roman surface and Boy Surface is given by the equations
for ![]() ![]() ![]() ![]() ![]()
Fischer, G. (Ed.). Mathematical Models from the Collections of Universities and Museums. Braunschweig, Germany: Vieweg, p. 19, 1986. Fischer, G. (Ed.). Plates 42-44 and 108-114 in Mathematische Modelle/Mathematical Models, Bildband/Photograph Volume. Braunschweig, Germany: Vieweg, pp. 42-44 and 108-109, 1986. Geometry Center. ``The Roman Surface.'' http://www.geom.umn.edu/zoo/toptype/pplane/roman/. Gray, A. Modern Differential Geometry of Curves and Surfaces. Boca Raton, FL: CRC Press, pp. 242-243, 1993. Nordstrand, T. ``Steiner's Roman Surface.'' http://www.uib.no/people/nfytn/steintxt.htm. Pinkall, U. Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, p. 64, 1986. Wang, P. ``Renderings.'' http://www.ugcs.caltech.edu/~peterw/portfolio/renderings/. |
||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。