请输入您要查询的字词:

 

单词 Apéry's Constant
释义

Apéry's Constant

N.B. A detailed on-line essay by S. Finchwas the starting point for this entry.


Apéry's constant is defined by

(1)

(Sloane's A002117) where is the Riemann Zeta Function. Apéry (1979) proved that isIrrational, although it is not known if it is Transcendental. TheContinued Fraction for is [1, 4, 1, 18, 1, 1, 1, 4, 1, ...] (Sloane's A013631). The positions at which thenumbers 1, 2, ... occur in the continued fraction are 1, 12, 25, 2, 64, 27, 17, 140, 10, ... (Sloane's A033165).


Sums related to are

(2)

(used by Apéry), and
(3)


(4)


(5)


(6)

where is the Dirichlet Lambda Function. The above equations are special cases of a general result due toRamanujan (Berndt 1985). Apéry's proof relied on showing that the sum
(7)

where is a Binomial Coefficient, satisfies the Recurrence Relation


(8)

(van der Poorten 1979, Zeilberger 1991).


Apéry's constant is also given by

(9)

where is a Stirling Number of the First Kind. This can be rewritten as
(10)

where is the th Harmonic Number. Yet another expression for is
(11)

(Castellanos 1988).


Integrals for include

(12)
 (13)

Gosper (1990) gave
(14)

A Continued Fraction involving Apéry's constant is
(15)

(Apéry 1979, Le Lionnais 1983). Amdeberhan (1996) used Wilf-Zeilberger Pairs with
(16)

to obtain
(17)

For ,
(18)

and for ,


(19)

(Amdeberhan 1996). The corresponding for and 2 are
(20)

and


(21)

Gosper (1996) expressed as the Matrix Product
(22)

where


(23)

which gives 12 bits per term. The first few terms are

(24)
(25)
(26)

which gives
(27)


Given three Integers chosen at random, the probability that no common factor will divide them all is

(28)


B. Haible and T. Papanikolaou computed to 1,000,000 Digits using a Wilf-ZeilbergerPair identity with

(29)

, and , giving the rapidly converging
(30)

(Amdeberhan and Zeilberger 1997). The record as of Aug. 1998 was 64 million digits (Plouffe).

See also Riemann Zeta Function, Wilf-Zeilberger Pair


References

Amdeberhan, T. ``Faster and Faster Convergent Series for .'' Electronic J. Combinatorics 3, R13 1-2, 1996.http://www.combinatorics.org/Volume_3/volume3.html#R13.

Amdeberhan, T. and Zeilberger, D. ``Hypergeometric Series Acceleration via the WZ Method.'' Electronic J. Combinatorics 4, No. 2, R3, 1-3, 1997.http://www.combinatorics.org/Volume_4/wilftoc.html#R03. Also available at http://www.math.temple.edu/~zeilberg/mamarim/mamarimhtml/accel.html.

Apéry, R. ``Irrationalité de et .'' Astérisque 61, 11-13, 1979.

Berndt, B. C. Ramanujan's Notebooks: Part I. New York: Springer-Verlag, 1985.

Beukers, F. ``A Note on the Irrationality of .'' Bull. London Math. Soc. 11, 268-272, 1979.

Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.

Castellanos, D. ``The Ubiquitous Pi. Part I.'' Math. Mag. 61, 67-98, 1988.

Conway, J. H. and Guy, R. K. ``The Great Enigma.'' In The Book of Numbers. New York: Springer-Verlag, pp. 261-262, 1996.

Ewell, J. A. ``A New Series Representation for .'' Amer. Math. Monthly 97, 219-220, 1990.

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/apery/apery.html

Gosper, R. W. ``Strip Mining in the Abandoned Orefields of Nineteenth Century Mathematics.'' In Computers in Mathematics (Ed. D. V. Chudnovsky and R. D. Jenks). New York: Marcel Dekker, 1990.

Haible, B. and Papanikolaou, T. ``Fast Multiprecision Evaluation of Series of Rational Numbers.'' Technical Report TI-97-7. Darmstadt, Germany: Darmstadt University of Technology, Apr. 1997.

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 36, 1983.

Plouffe, S. ``Plouffe's Inverter: Table of Current Records for the Computationof Constants.'' http://www.lacim.uqam.ca/pi/records.html.

Sloane, N. J. A.A013631,A033165, andA002117/M0020in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html.

van der Poorten, A. ``A Proof that Euler Missed... Apéry's Proof of the Irrationality of .'' Math. Intel. 1, 196-203, 1979.

Zeilberger, D. ``The Method of Creative Telescoping.'' J. Symb. Comput. 11, 195-204, 1991.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 21:19:25