请输入您要查询的字词:

 

单词 Nirenberg's Conjecture
释义

Nirenberg's Conjecture

If the Gauss Map of a complete minimal surface omits a Neighborhood of the Sphere, then the surfaceis a Plane. This was proven by Osserman (1959). Xavier (1981) subsequently generalized the result as follows.If the Gauss Map of a complete Minimal Surface omits points, then the surface is a Plane.

See also Gauss Map, Minimal Surface, Neighborhood


References

do Carmo, M. P. Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, p. 42, 1986.

Osserman, R. ``Proof of a Conjecture of Nirenberg.'' Comm. Pure Appl. Math. 12, 229-232, 1959.

Xavier, F. ``The Gauss Map of a Complete Nonflat Minimal Surface Cannot Omit 7 Points on the Sphere.'' Ann. Math. 113, 211-214, 1981.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 3:23:10