请输入您要查询的字词:

 

单词 Sophie Germain Prime
释义

Sophie Germain Prime

A Prime is said to be a Sophie Germain prime if both and are Prime. The first few Sophie Germainprimes are 2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, ... (Sloane's A005384).


Around 1825, Sophie Germain proved that the first case of Fermat's Last Theorem is true for such primes, i.e., if is a Sophie Germain prime, there do not exist Integers , , and different from 0 and not multiplesof such that



Sophie Germain primes of the form (which makes a Prime) correspond to theindices of composite Mersenne Numbers . Since the largest known CompositeMersenne Number is with , is the largest known Sophie Germain prime.

See also Cunningham Chain, Fermat's Last Theorem, Mersenne Number, Twin Primes


References

Dubner, H. ``Large Sophie Germain Primes.'' Math. Comput. 65, 393-396, 1996.

Ribenboim, P. ``Sophie Germane Primes.'' §5.2 in The New Book of Prime Number Records. New York: Springer-Verlag, pp. 329-332, 1996.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 154-157, 1993.

Sloane, N. J. A. SequenceA005384/M0731in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 21:21:16