单词 | Sociable Numbers | ||||||||||||||||
释义 | Sociable NumbersNumbers which result in a periodic Aliquot Sequence. If the period is 1, the number is called a Perfect Number.If the period is 2, the two numbers are called an Amicable Pair. If the period is The table below summarizes the number of sociable cycles known as given in the compilation by Moews (1995).
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Item 61, Feb. 1972. Borho, W. ``Über die Fixpunkte der Cohen, H. ``On Amicable and Sociable Numbers.'' Math. Comput. 24, 423-429, 1970. Devitt, J. S.; Guy, R. K.; and Selfridge, J. L. Third Report on Aliquot Sequences, Congr. Numer. XVIII, Proc. 6th Manitoba Conf. Numerical Math, pp. 177-204, 1976. Flammenkamp, A. ``New Sociable Numbers.'' Math. Comput. 56, 871-873, 1991. Gardner, M. ``Perfect, Amicable, Sociable.'' Ch. 12 in Mathematical Magic Show: More Puzzles, Games, Diversions, Illusions and Other Mathematical Sleight-of-Mind from Scientific American. New York: Vintage, pp. 160-171, 1978. Guy, R. K. ``Aliquot Cycles or Sociable Numbers.'' §B7 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 62-63, 1994. Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 145-146, 1979. Moews, D. and Moews, P. C. ``A Search for Aliquot Cycles Below Moews, D. and Moews, P. C. ``A Search for Aliquot Cycles and Amicable Pairs.'' Math. Comput. 61, 935-938, 1993. Moews, D. ``A List of Aliquot Cycles of Length Greater than 2.'' Rev. Dec. 18, 1995. http://xraysgi.ims.uconn.edu:8080/sociable.txt. Poulet, P. Question 4865. L'interméd. des Math. 25, 100-101, 1918. te Riele, H. J. J. ``Perfect Numbers and Aliquot Sequences.'' In Computational Methods in Number Theory, Part I. (Eds. H. W. Lenstra Jr. and R. Tijdeman). Amsterdam, Netherlands: Mathematisch Centrum, pp. 141-157, 1982. |
||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。