单词 | Number Field Sieve Factorization Method |
释义 | Number Field Sieve Factorization MethodAn extremely fast factorization method developed by Pollard which was used to factor the RSA-130 Number. This method is the most powerful known for factoring general numbers, and has complexity ![]() reducing the exponent over the Continued Fraction Factorization Algorithm and Quadratic Sieve FactorizationMethod. There are three values of ![]() ![]() for the ``general'' case applicable to any Odd Positive number which is not a Power, ![]() and for a version using many Polynomials (Coppersmith 1993), ![]()
Coppersmith, D. ``Modifications to the Number Field Sieve.'' J. Cryptology 6, 169-180, 1993. Coppersmith, D.; Odlyzko, A. M.; and Schroeppel, R. ``Discrete Logarithms in GF( Cowie, J.; Dodson, B.; Elkenbracht-Huizing, R. M.; Lenstra, A. K.; Montgomery, P. L.; Zayer, J. A. ``World Wide Number Field Sieve Factoring Record: On to Elkenbracht-Huizing, M. ``A Multiple Polynomial General Number Field Sieve.'' Algorithmic Number Theory (Talence, 1996). New York: Springer-Verlag, pp. 99-114, 1996. Elkenbracht-Huizing, M. ``An Implementation of the Number Field Sieve.'' Experiment. Math. 5, 231-253, 1996. Elkenbracht-Huizing, R.-M. ``Historical Background of the Number Field Sieve Factoring Method.'' Nieuw Arch. Wisk. 14, 375-389, 1996. Lenstra, A. K. and Lenstra, H. W. Jr. ``Algorithms in Number Theory.'' In Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity (Ed. J. van Leeuwen). New York: Elsevier, pp. 673-715, 1990. Pomerance, C. ``A Tale of Two Sieves.'' Not. Amer. Math. Soc. 43, 1473-1485, 1996. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。