单词 | Strong Pseudoprime | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Strong PseudoprimeA strong pseudoprime to a base
![]() The definition is motivated by the fact that a Fermat Pseudoprime
![]() ![]()
![]()
![]()
If A strong pseudoprime to the base There are 4842 strong psp(2) less than If
(Sloane's A014233). A seven-step test utilizing these results (Riesel 1994) allows all numbers less than ![]() Pomerance et al. (1980) have proposed a test based on a combination of Strong Pseudoprimes andLucas Pseudoprimes. They offer a $620 reward for discovery of a Composite Number whichpasses their test (Guy 1994, p. 28). See also Carmichael Number, Miller's Primality Test, Poulet Number, Rabin-Miller Strong PseudoprimeTest, Rotkiewicz Theorem, Strong Elliptic Pseudoprime, Strong Lucas Pseudoprime
Baillie, R. and Wagstaff, S. ``Lucas Pseudoprimes.'' Math. Comput. 35, 1391-1417, 1980. Guy, R. K. ``Pseudoprimes. Euler Pseudoprimes. Strong Pseudoprimes.'' §A12 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 27-30, 1994. Jaeschke, G. ``On Strong Pseudoprimes to Several Bases.'' Math. Comput. 61, 915-926, 1993. Monier, L. ``Evaluation and Comparison of Two Efficient Probabilistic Primality Testing Algorithms.'' Theor. Comput. Sci. 12, 97-108, 1980. Pomerance, C.; Selfridge, J. L.; and Wagstaff, S. S. Jr. ``The Pseudoprimes to Rabin, M. O. ``Probabilistic Algorithm for Testing Primality.'' J. Number Th. 12, 128-138, 1980. Riesel, H. Prime Numbers and Computer Methods for Factorization, 2nd ed. Basel: Birkhäuser, p. 92, 1994. Sloane, N. J. A. Sequence A014233in ``The On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。