请输入您要查询的字词:

 

单词 Thomson Problem
释义

Thomson Problem

Determine the stable equilibrium positions of classical electrons constrained to move on thesurface of a Sphere and repelling each other by an inverse square law. Exact solutions for to 8 are known,but and 11 are still unknown.


In reality, Earnshaw's theorem guarantees that no system of discrete electric charges canbe held in stable equilibrium under the influence of their electrical interaction alone (Aspden 1987).

See also Fejes Tóth's Problem


References

Altschuler, E. L.; Williams, T. J.; Ratner, E. R.; Dowla, F.; and Wooten, F. ``Method of Constrained Global Optimization.'' Phys. Rev. Let. 72, 2671-2674, 1994.

Altschuler, E. L.; Williams, T. J.; Ratner, E. R.; Dowla, F.; and Wooten, F. ``Method of Constrained Global Optimization--Reply.'' Phys. Rev. Let. 74, 1483, 1995.

Ashby, N. and Brittin, W. E. ``Thomson's Problem.'' Amer. J. Phys. 54, 776-777, 1986.

Aspden, H. ``Earnshaw's Theorem.'' Amer. J. Phys. 55, 199-200, 1987.

Berezin, A. A. ``Spontaneous Symmetry Breaking in Classical Systems.'' Amer. J. Phys. 53, 1037, 1985.

Calkin, M. G.; Kiang, D.; and Tindall, D. A. ``Minimum Energy Configurations.'' Nature 319, 454, 1986.

Erber, T. and Hockney, G. M. ``Comment on `Method of Constrained Global Optimization.''' Phys. Rev. Let. 74, 1482-1483, 1995.

Marx, E. ``Five Charges on a Sphere.'' J. Franklin Inst. 290, 71-74, Jul. 1970.

Melnyk, T. W.; Knop, O.; and Smith, W. R. ``Extremal Arrangements of Points and Unit Charges on a Sphere: Equilibrium Configurations Revisited.'' Canad. J. Chem. 55, 1745-1761, 1977.

Whyte, L. L. ``Unique Arrangement of Points on a Sphere.'' Amer. Math. Monthly 59, 606-611, 1952.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 21:26:37