单词 | Togliatti Surface |
释义 | Togliatti SurfaceTogliatti (1940, 1949) showed that Quintic Surfaces having 31 Ordinary DoublePoints exist, although he did not explicitly derive equations for such surfaces. Beauville (1978)subsequently proved that 31 double points are the maximum possible, and quintic surfaces having 31 Ordinary DoublePoints are therefore sometimes called Togliatti surfaces. van Straten (1993) subsequentlyconstructed a 3-D family of solutions and in 1994, Barth derived the example known as the Dervish. See also Dervish, Ordinary Double Point, Quintic Surface
Beauville, A. ``Surfaces algébriques complexes.'' Astérisque 54, 1-172, 1978. Endraß, S. ``Togliatti Surfaces.''http://www.mathematik.uni-mainz.de/AlgebraischeGeometrie/docs/Etogliatti.shtml. Hunt, B. ``Algebraic Surfaces.'' http://www.mathematik.uni-kl.de/~wwwagag/Galerie.html. Togliatti, E. G. ``Una notevole superficie de Togliatti, E. ``Sulle superficie monoidi col massimo numero di punti doppi.'' Ann. Mat. Pura Appl. 30, 201-209, 1949. van Straten, D. ``A Quintic Hypersurface in |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。