请输入您要查询的字词:

 

单词 Unknotting Number
释义

Unknotting Number

The smallest number of times a Knot must be passed through itself to untie it. Lower bounds can be computed usingrelatively straightforward techniques, but it is in general difficult to determine exact values. Many unknotting numberscan be determined from a knot's Signature. A Knot withunknotting number 1 is a Prime Knot (Scharlemann 1985). It is not always true that the unknotting number is achieved in a projection with the minimal number of crossings.


The following table is from Kirby (1997, pp. 88-89), with the values for 10-139and 10-152taken fromKawamura. The unknotting numbers for 10-154and 10-161can be found using Menasco's Theorem(Stoimenow 1998).

03-001108-009109-0102 or 309-0321 or 2
04-001108-0101 or 209-011209-0331
05-001208-011109-012109-0341
05-002108-012209-0132 or 309-0352 or 3
06-001108-013109-014109-0362
06-002108-014109-015209-0372
06-003108-015209-016309-0382 or 3
07-001308-016209-017209-0391
07-002108-017109-018209-0402
07-003208-018209-019109-0412
07-004208-019309-020209-0421
07-005208-020109-021109-0432
07-006108-021109-022109-0441
07-007109-001409-023209-0451
08-001109-002109-024109-0462
08-002209-003309-025209-0472
08-003209-004209-026109-0482
08-004209-005209-027109-0492 or 3
08-005209-006309-028110-1394
08-006209-007209-029110-1524
08-007109-008209-030110-1543
08-008209-009309-031210-1613

See also Bennequin's Conjecture, Menasco's Theorem, Milnor's Conjecture, Signature (Knot)


References

Adams, C. C. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. New York: W. H. Freeman, pp. 57-64, 1994.

Cipra, B. ``From Knot to Unknot.'' What's Happening in the Mathematical Sciences, Vol. 2. Providence, RI: Amer. Math. Soc., pp. 8-13, 1994.

Kawamura, T. ``The Unknotting Numbers of and are 4.'' To appear in Osaka J. Math. http://ms421sun.ms.u-tokyo.ac.jp/~kawamura/worke.html.

Kirby, R. (Ed.) ``Problems in Low-Dimensional Topology.'' AMS/IP Stud. Adv. Math., 2.2, Geometric Topology (Athens, GA, 1993). Providence, RI: Amer. Math. Soc., pp. 35-473, 1997.

Scharlemann, M. ``Unknotting Number One Knots are Prime.'' Invent. Math. 82, 37-55, 1985.

Stoimenow, A. ``Positive Knots, Closed Braids and the Jones Polynomial.'' Rev. May, 1997. http://www.informatik.hu-berlin.de/~stoimeno/pos.ps.gz.

Weisstein, E. W. ``Knots and Links.'' Mathematica notebook Knots.m.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 21:18:10