请输入您要查询的字词:

 

单词 Wang's Conjecture
释义

Wang's Conjecture

Wang's conjecture states that if a set of tiles can tile the plane, then they can always be arranged to do so periodically(Wang 1961). The Conjecture was refuted when Berger (1966) showed that an aperiodic set of tiles existed. Bergerused 20,426 tiles, but the number has subsequently been greatly reduced.

See also Tiling


References

Adler, A. and Holroyd, F. C. ``Some Results on One-Dimensional Tilings.'' Geom. Dedicata 10, 49-58, 1981.

Berger, R. ``The Undecidability of the Domino Problem.'' Mem. Amer. Math. Soc. No. 66, 1-72, 1966.

Grünbaum, B. and Sheppard, G. C. Tilings and Patterns. New York: W. H. Freeman, 1986.

Hanf, W. ``Nonrecursive Tilings of the Plane. I.'' J. Symbolic Logic 39, 283-285, 1974.

Mozes, S. ``Tilings, Substitution Systems, and Dynamical Systems Generated by Them.'' J. Analyse Math. 53, 139-186, 1989.

Myers, D. ``Nonrecursive Tilings of the Plane. II.'' J. Symbolic Logic 39, 286-294, 1974.

Robinson, R. M. ``Undecidability and Nonperiodicity for Tilings of the Plane.'' Invent. Math. 12, 177-209, 1971.

Wang, H. Bell Systems Tech. J. 40, 1-41, 1961.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/4 7:46:35