请输入您要查询的字词:

 

单词 Wieferich Prime
释义

Wieferich Prime

A Wieferich prime is a Prime which is a solution to the Congruence equation


Note the similarity of this expression to the special case of Fermat's Little Theorem


which holds for all Odd Primes. However, the only Wieferich primes less than are and3511 (Lehmer 1981, Crandall 1986, Crandall et al. 1997). Interestingly, one less than these numbers have suggestive periodicBinary representations
 
 

A Prime factor of a Mersenne Number is a Wieferich prime Iff . Therefore, Mersenne Primes are not Wieferich primes.


If the first case of Fermat's Last Theorem is false for exponent , then must be a Wieferich prime (Wieferich1909). If with and Relatively Prime, then is a Wieferich prime Iff alsodivides . The Conjecture that there are no three Powerful Numbers implies thatthere are infinitely many Wieferich primes (Granville 1986, Vardi 1991). In addition, the abc Conjecture impliesthat there are at least Wieferich primes for some constant (Silverman 1988, Vardi 1991).

See also abc Conjecture, Fermat's Last Theorem, Fermat Quotient,Mersenne Number, Mirimanoff's Congruence, Powerful Number


References

Brillhart, J.; Tonascia, J.; and Winberger, P. ``On the Fermat Quotient.'' In Computers and Number Theory (Ed. A. O. L. Atkin and B. J. Birch). New York: Academic Press, pp. 213-222, 1971.

Crandall, R. Projects in Scientific Computation. New York: Springer-Verlag, 1986.

Crandall, R.; Dilcher, K; and Pomerance, C. ``A search for Wieferich and Wilson Primes.'' Math. Comput. 66, 433-449, 1997.

Granville, A. ``Powerful Numbers and Fermat's Last Theorem.'' C. R. Math. Rep. Acad. Sci. Canada 8, 215-218, 1986.

Lehmer, D. H. ``On Fermat's Quotient, Base Two.'' Math. Comput. 36, 289-290, 1981.

Ribenboim, P. ``Wieferich Primes.'' §5.3 in The New Book of Prime Number Records. New York: Springer-Verlag, pp. 333-346, 1996.

Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, pp. 116 and 157, 1993.

Silverman, J. ``Wieferich's Criterion and the abc Conjecture.'' J. Number Th. 30, 226-237, 1988.

Vardi, I. ``Wieferich.'' §5.4 in Computational Recreations in Mathematica. Reading, MA: Addison-Wesley, pp. 59-62 and 96-103, 1991.

Wieferich, A. ``Zum letzten Fermat'schen Theorem.'' J. reine angew. Math. 136, 293-302, 1909.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 16:26:16