单词 | Euler-Mascheroni Constant | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Euler-Mascheroni ConstantThe Euler-Mascheroni constant is denoted (or sometimes ) and has the numerical value
It is not known if this constant is Irrational, let alone Transcendental. However, Conway and Guy (1996) are ``prepared to bet that it is transcendental,'' althoughthey do not expect a proof to be achieved within their lifetimes. The Euler-Mascheroni constant arises in many integrals
and sums
where is the Riemann Zeta Function and are the Bernoulli Numbers. It is also given by the Euler Product
Infinite Products involving also arise from the G-Functionwith Positive Integer . The cases and give
The Euler-Mascheroni constant is also given by the limits
(Le Lionnais 1983). The difference between the th convergent in (6) and is given by
The symbol is sometimes also used for
Odena (1982-1983) gave the strange approximation
No quadratically converging algorithm for computing is known (Bailey 1988). 7,000,000 digits of have been computed as of Feb. 1998 (Plouffe). See also Euler Product, Mertens Theorem, Stieltjes Constants
Bailey, D. H. ``Numerical Results on the Transcendence of Constants Involving , , and Euler's Constant.'' Math. Comput. 50, 275-281, 1988. Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972. Brent, R. P. ``Computation of the Regular Continued Fraction for Euler's Constant.'' Math. Comput. 31, 771-777, 1977. Brent, R. P. and McMillan, E. M. ``Some New Algorithms for High-Precision Computation of Euler's Constant.'' Math. Comput. 34, 305-312, 1980. Castellanos, D. ``The Ubiquitous Pi. Part I.'' Math. Mag. 61, 67-98, 1988. Conway, J. H. and Guy, R. K. ``The Euler-Mascheroni Number.'' In The Book of Numbers. New York: Springer-Verlag, pp. 260-261, 1996. de la Vallée Poussin, C.-J. Untitled communication. Annales de la Soc. Sci. Bruxelles 22, 84-90, 1898. DeTemple, D. W. ``A Quicker Convergence to Euler's Constant.'' Amer. Math. Monthly 100, 468-470, 1993. Dirichlet, G. L. J. für Math. 18, 273, 1838. Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/euler/euler.html Flajolet, P. and Vardi, I. ``Zeta Function Expansions of Classical Constants.'' Unpublished manuscript, 1996. http://pauillac.inria.fr/algo/flajolet/Publications/landau.ps. Gerst, I. ``Some Series for Euler's Constant.'' Amer. Math. Monthly 76, 273-275, 1969. Glaisher, J. W. L. ``On the History of Euler's Constant.'' Messenger of Math. 1, 25-30, 1872. Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA: Academic Press, 1979. Knuth, D. E. ``Euler's Constant to 1271 Places.'' Math. Comput. 16, 275-281, 1962. Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 28, 1983. Plouffe, S. ``Plouffe's Inverter: Table of Current Records for the Computationof Constants.'' http://www.lacim.uqam.ca/pi/records.html. Sloane, N. J. A. SequencesA033091,A033092,A033149,A046114,A046114,A001620/M3755, andA002852/M0097in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html. Sweeney, D. W. ``On the Computation of Euler's Constant.'' Math. Comput. 17, 170-178, 1963. Vacca, G. ``A New Series for the Eulerian Constant.'' Quart. J. Pure Appl. Math. 41, 363-368, 1910. Young, R. M. ``Euler's Constant.'' Math. Gaz. 75, 187-190, 1991. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。