请输入您要查询的字词:

 

单词 Finite Group
释义

Finite Group

A Group of finite Order. Examples of finite groups are the Modulo MultiplicationGroups and the Point Groups. The Classification Theorem of finiteSimple Groups states that the finite Simple Groups can beclassified completely into one of five types.


There is no known Formula to give the number of possible finite groups as a function of the Order . It is possible, however, to determine the number of Abelian Groups using theKronecker Decomposition Theorem, and there is at least one Abelian Group for every finite order .


The following table gives the numbers and names of the first few groups of Order . In the table, denotes the number of non-Abelian groups, denotes the number of Abelian Groups, and the total number of groups. In addition, denotes an Cyclic Group of Order , an Alternating Group, a Dihedral Group, the group of the Quaternions, the cubic group, and a Direct Product.


Name NA
1Finite Group e101
2Finite Group Z2101
3Finite Group Z3101
4Finite Group Z2Z2, Finite Group Z4202
5Finite Group Z5101
6Finite Group Z6, Finite Group D3112
7Finite Group Z7101
8Finite Group Z2Z2Z2, Finite Group Z2Z4, Finite Group Z8,Finite Group Q8, Finite Group D4325
9202
10112
11101
12235
13101
14112
15101


Miller (1930) gave the number of groups for orders 1-100, including an erroneous 297 as the number of groups ofOrder 64. Senior and Lunn (1934, 1935) subsequently completed the list up to 215, but omitted 128and 192. The number of groups of Order 64 was corrected in Hall and Senior (1964). James et al. (1990) found 2328 groups in 115 Isoclinism families of Order 128,correcting previous work, and O'Brien (1991) found the number of groups of Order 256. The number ofgroups is known for orders up to 1000, with the possible exception of 512 and 768. Besche and Eick (1998) have determinedthe number of finite groups of orders less than 1000 which are not powers of 2 or 3. These numbers appear in the Magma database. The numbers of nonisomorphic finite groups of each Order forthe first few hundred orders are given in the following table (Sloane's A000001--the very first sequence).


The smallest order for which there exist , 2, ...nonisomorphic groups are 1, 4, 75, 28, 8, 42, ... (Sloane's A046057).The incrementally largest number of nonisomorphic finite groups are 1, 2, 5, 14, 15, 51, 52, 267, 2328, ... (Sloane's A046058),which occur for orders 1, 4, 8, 16, 24, 32, 48, 64, 128, ... (Sloane's A046059).


The number of Abelian Groups of Order , 2, ... are given by 1,1, 1, 2, 1, 1, 1, 3, ... (Sloane's A000688). The following table summarizes the total number of finite groups and thenumber of Abelian finite groups for small orders .

11151111011115111
211525210241152123
31153111031115322
4225415310414315441
51155211052115521
6215613310621156182
71157211071115711
853582110845615821
92259111091115911
102160132110611602387
111161111112116111
12526221112435162555
131163421131116311
142164267111146116452
151165111151116521
1614566411165216621
171167111174216711
1852685211821168573
191169111191116922
2052704112047317041
212171111212217152
2221725061222117242
231173111231117311
2415374211244217441
252275321255317522
26217642126162176425
275377111271117711
2842786112823281517821
291179111292117911
30418052513041180374
3111811551311118111
32517822113210218241
331183111331118321
34218415213421184123
351185111355318511
36144862113615318661
371187111371118711
3821881231384118842
3921891113911189133
401439010214011219041
411191111411119111
4261924214221192154311
431193211431119311
44429421144197119421
452295111451119521
462196230714621196174
471197111476219711
48525985214852198102
492299221491119911
5022100164150132200526

201212511130121351143
20221252464302213521957
20321253213031135311
2041222542130442535441
20521255113052135521
20621256560922230610235652
20722257113071135721
208515258613089235821
20911259113092135911
210121260152310613601626
21111261223111136122
212522622131261336221
21311263113131136332
2142126439331421364112
21511265113154236511
2161779266413164236661
21711267113171136711
218212684231841368425
21921269113191136922
22015227030332016401137041
22111271113211137111
2226127254532241372152
22311273513231137311
2241977274213241761037441
22564275423252237573
2262127610232621376123
22711277113272137711
22815227821328153378603
22911279423291137911
23041280403330121380112
23121281113311138121
232143282413324238221
23311283113335238311
23416228442334213842016915
23511285213351138521
2364228641336228538621
23721287113371138742
238412881045143385238852
23911289223391138911
240208529041340152390121
24111291213411139111
2425229252342182392446
243677293113435339311
2445229423234412339421
24522295113451139511
2464129614334621396304
24711297533471139711
2481232982134812239821
24911299113491139951
25015330049435010240022110

See also Abelian Group, Abel's Theorem, Abhyankar's Conjecture, Alternating Group, Burnside'sLemma, Burnside Problem, Chevalley Groups, Classification Theorem, Composition Series,Dihedral Group, Group, Jordan-Hölder Theorem, Kronecker DecompositionTheorem, Lie Group, Lie-Type Group, Linear Group, Modulo Multiplication Group, Order(Group), Orthogonal Group, p-Group, Point Groups, Simple Group, Sporadic Group,Symmetric Group, Symplectic Group, Twisted Chevalley Groups, Unitary Group


References

Arfken, G. ``Discrete Groups.'' §4.9 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 243-251, 1985.

Artin, E. ``The Order of the Classical Simple Groups.'' Comm. Pure Appl. Math. 8, 455-472, 1955.

Aschbacher, M. Finite Group Theory. Cambridge, England: Cambridge University Press, 1994.

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 73-75, 1987.

Besche and Eick. ``Construction of Finite Groups.'' To Appear in J. Symb. Comput.

Besche and Eick. ``The Groups of Order at Most 1000.'' To Appear in J. Symb. Comput.

Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A. Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, England: Clarendon Press, 1985.

Hall, M. Jr. and Senior, J. K. The Groups of Order . New York: Macmillan, 1964.

James, R.; Newman, M. F.; and O'Brien, E. A. ``The Groups of Order 128.'' J. Algebra 129, 136-158, 1990.

Miller, G. A. ``Determination of All the Groups of Order 64.'' Amer. J. Math. 52, 617-634, 1930.

O'Brien, E. A. ``The Groups of Order 256.'' J. Algebra 143, 219-235, 1991.

O'Brien, E. A. and Short, M. W. ``Bibliography on Classification of Finite Groups.'' Manuscript, Australian National University, 1988.

Senior, J. K. and Lunn, A. C. ``Determination of the Groups of Orders 101-161, Omitting Order 128.'' Amer. J. Math. 56, 328-338, 1934.

Senior, J. K. and Lunn, A. C. ``Determination of the Groups of Orders 162-215, Omitting Order 192.'' Amer. J. Math. 57, 254-260, 1935.

Simon, B. Representations of Finite and Compact Groups. Providence, RI: Amer. Math. Soc., 1996.

Sloane, N. J. A. Sequences A000001/M0098, A000688/M0064, A046057, A046058, and A046059in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html.

University of Sydney Computational Algebra Group. ``The Magma Computational Algebra for Algebra, Number Theory and Geometry.'' http://www.maths.usyd.edu.au:8000/u/magma/.

Weisstein, E. W. ``Groups.'' Mathematica notebook Groups.m.

Wilson, R. A. ``ATLAS of Finite Group Representation.''http://for.mat.bham.ac.uk/atlas/.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 5:43:51