请输入您要查询的字词:

 

单词 Gosper's Algorithm
释义

Gosper's Algorithm

An Algorithm for finding closed form Hypergeometric Identities. The algorithm treatssums whose successive terms have ratios which are Rational Functions. Not only does it decideconclusively whether there exists a hypergeometric sequence such that

(1)

but actually produces if it exists. If not, it produces . An outline of the algorithm follows (Petkovsek 1996):
1. For the ratio which is a Rational Function of .

2. Write
(2)

where , , and are polynomials satisfying
(3)

for all nonnegative integers .

3. Find a nonzero polynomial solution of
(4)

if one exists.

4. Return and stop.


Petkovsek et al. (1996) describe the algorithm as ``one of the landmarks in the history of computerization of the problem ofclosed form summation.'' Gosper's algorithm is vital in the operation of Zeilberger's Algorithm and the machinery ofWilf-Zeilberger Pairs.

See also Hypergeometric Identity, Sister Celine's Method, Wilf-Zeilberger Pair, Zeilberger's Algorithm


References

Gessel, I. and Stanton, D. ``Strange Evaluations of Hypergeometric Series.'' SIAM J. Math. Anal. 13, 295-308, 1982.

Gosper, R. W. ``Decision Procedure for Indefinite Hypergeometric Summation.'' Proc. Nat. Acad. Sci. USA 75, 40-42, 1978.

Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.

Lafron, J. C. ``Summation in Finite Terms.'' In Computer Algebra Symbolic and Algebraic Computation, 2nd ed. (Ed. B. Buchberger, G. E. Collins, and R. Loos). New York: Springer-Verlag, 1983.

Paule, P. and Schorn, M. ``A Mathematica Version of Zeilberger's Algorithm for Proving Binomial Coefficient Identities.'' J. Symb. Comput. 20, 673-698, 1995.

Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. ``Gosper's Algorithm.'' Ch. 5 in A=B. Wellesley, MA: A. K. Peters, pp. 73-99, 1996.

Zeilberger, D. ``The Method of Creative Telescoping.'' J. Symb. Comput. 11, 195-204, 1991.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/4/4 8:28:25