单词 | Graph (Graph Theory) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
释义 | Graph (Graph Theory)A mathematical object composed of points known as Vertices or Nodes and linesconnecting some (possibly empty) Subset of them, known as Edges. The study of graphs is knownas Graph Theory. Graphs are 1-D Complexes, and there are always an Even number of OddNodes in a graph. The number of nonisomorphic graphs with Nodes is givenby the Pólya Enumeration Theorem. The first few values for , 2, ..., are 1, 2,4, 11, 34, 156, 1044, ... (Sloane's A000088; see above figure). Graph sums, differences, powers, and products can be defined, as can graph eigenvalues. Before applying Pólya Enumeration Theorem, define the quantity
Application of the Pólya Enumeration Theorem then gives the formula
Letting then gives a Polynomial , which is a Generating Function for (i.e., the terms of give) the number of graphs with Edges. The total number of graphs having edges is . The first few are
giving the number of graphs with nodes as 1, 2, 4, 11, 34, 156, 1044, ... (Sloane's A000088). King and Palmer (cited in Read 1981)have calculated up to , for which
References Bogomolny, A. ``Graph Puzzles.'' http://www.cut-the-knot.com/do_you_know/graphs2.html. Fujii, J. N. Puzzles and Graphs. Washington, DC: National Council of Teachers, 1966. Harary, F. ``The Number of Linear, Directed, Rooted, and Connected Graphs.'' Trans. Amer. Math. Soc. 78, 445-463, 1955. Pappas, T. ``Networks.'' The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, pp. 126-127, 1989. Read, R. ``The Graph Theorists Who Count--and What They Count.'' In The Mathematical Gardner (Ed. D. Klarner). Boston, MA: Prindle, Weber, and Schmidt, pp. 326-345, 1981. Sloane, N. J. A. SequenceA000088/M1253in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and extended entry inSloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。