单词 | Groupoid |
释义 | GroupoidThere are at least two definitions of ``groupoid'' currently in use. The first type of groupoid is an algebraic structure on a Set with a Binary Operator. The only restriction onthe operator is Closure (i.e., applying the Binary Operator to two elements of a given set The second type of groupoid is an algebraic structure first defined by Brandt (1926) and also known as a Virtual Group. A groupoid with base
Brandt, W. ``Über eine Verallgemeinerung des Gruppengriffes.'' Math. Ann. 96, 360-366, 1926. Brown, R. ``From Groups to Groupoids: A Brief Survey.'' Bull. London Math. Soc. 19, 113-134, 1987. Brown, R. Topology: A Geometric Account of General Topology, Homotopy Types, and the Fundamental Groupoid. New York: Halsted Press, 1988. Higgins, P. J. Notes on Categories and Groupoids. London: Van Nostrand Reinhold, 1971. Ramsay, A.; Chiaramonte, R.; and Woo, L. ``Groupoid Home Page.'' http://amath-www.colorado.edu:80/math/researchgroups/groupoids/groupoids.shtml. Rosenfeld, A. An Introduction to Algebraic Structures. New York: Holden-Day, 1968. Sloane, N. J. A. SequencesA001424 andA001329/M4760in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. Weinstein, A. ``Groupoids: Unifying Internal and External Symmetry.'' Not. Amer. Math. Soc. 43, 744-752, 1996. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。