单词 | Hadamard Matrix | ||||||||||||||||
释义 | Hadamard Matrix![]() A class of Sylvester This is equivalent to the definition
![]() ![]() ![]() ![]() ![]() ![]() Paley's Theorem guarantees that there always exists a Hadamard matrix Sawade (1985) constructed If
![]() ![]()
Hadamard matrices can be used to make Error-Correcting Codes. See also Hadamard Design, Paley Construction, Paley's Theorem, Walsh Function
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 107-109 and 274, 1987. Beth, T.; Jungnickel, D.; and Lenz, H. Design Theory. New York: Cambridge University Press, 1986. Colbourn, C. J. and Dinitz, J. H. (Eds.) ``Hadamard Matrices and Designs.'' Ch. 24 in CRC Handbook of Combinatorial Designs. Boca Raton, FL: CRC Press, pp. 370-377, 1996. Geramita, A. V. Orthogonal Designs: Quadratic Forms and Hadamard Matrices. New York: Marcel Dekker, 1979. Golomb, S. W. and Baumert, L. D. ``The Search for Hadamard Matrices.'' Amer. Math. Monthly 70, 12-17, 1963. Hall, M. Jr. Combinatorial Theory, 2nd ed. New York: Wiley, p. 207, 1986. Hedayat, A. and Wallis, W. D. ``Hadamard Matrices and Their Applications.'' Ann. Stat. 6, 1184-1238, 1978. Kimura, H. ``Classification of Hadamard Matrices of Order 28.'' Disc. Math. 133, 171-180, 1994. Kimura, H. ``Classification of Hadamard Matrices of Order 28 with Hall Sets.'' Disc. Math. 128, 257-269, 1994. Ogilvie, G. A. ``Solution to Problem 2511.'' Math. Questions and Solutions 10, 74-76, 1868. Paley, R. E. A. C. ``On Orthogonal Matrices.'' J. Math. Phys. 12, 311-320, 1933. Ryser, H. J. Combinatorial Mathematics. Buffalo, NY: Math. Assoc. Amer., pp. 104-122, 1963. Sawade, K. ``A Hadamard Matrix of Order-268.'' Graphs Combinatorics 1, 185-187, 1985. Seberry, J. and Yamada, M. ``Hadamard Matrices, Sequences, and Block Designs.'' Ch. 11 in Contemporary Design Theory: A Collection of Surveys (Eds. J. H. Dinitz and D. R. Stinson). New York: Wiley, pp. 431-560, 1992. Sloane, N. J. A. SequenceA007299/M3736in ``An On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995. Spence, E. ``Classification of Hadamard Matrices of Order 24 and 28.'' Disc. Math 140, 185-243, 1995. Sylvester, J. J. ``Thoughts on Orthogonal Matrices, Simultaneous Sign-Successions, and Tessellated Pavements in Two or More Colours, with Applications to Newton's Rule, Ornamental Tile-Work, and the Theory of Numbers.'' Phil. Mag. 34, 461-475, 1867. Sylvester, J. J. ``Problem 2511.'' Math. Questions and Solutions 10, 74, 1868. van Lint, J. H. and Wilson, R. M. A Course in Combinatorics. New York: Cambridge University Press, 1993. |
||||||||||||||||
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。