| 释义 | 
		Hermite PolynomialA set of Orthogonal Polynomials. The Hermite polynomials   are illustrated above for   and  , 2,..., 5. 
 
 The Generating Function for Hermite polynomials is
    | (1) |  
  Using a Taylor Series shows that,
  Since  ,
  Now define operators
  It follows that
  so
   | (8) |  
  and
   | (9) |  
  which means the following definitions are equivalent:
  The Hermite Polynomials are related to the derivative of the Error Function by
   | (13) |  
  They have a contour integral representation
   | (14) |  
  They are orthogonal in the range   with respect to the Weighting Function  
   | (15) |  
  Define the associated functions
   | (16) |  
 These obey the orthogonality conditions
   if   is Even and  ,  , and  .  Otherwise, thelast integral is 0 (Szegö 1975, p. 390).
 
 They also satisfy the Recurrence Relations
    | (22) |  
 
   | (23) |  
 The Discriminant is
    | (24) |  
  (Szegö 1975, p. 143).
 
 An interesting identity is
    | (25) |  
 The first few Polynomials are 
 
 
 
 
 A class of generalized Hermite Polynomials   satisfying
    | (26) |  
  was studied by Subramanyan (1990).  A class of related Polynomials defined by
   | (27) |  
  and with Generating Function
   | (28) |  
  was studied by Djordjevic (1996).  They satisfy
   | (29) |  
 
 
 A modified version of the Hermite Polynomial is sometimes defined by
    | (30) |  
  See also Mehler's Hermite Polynomial Formula, Weber Functions References
 Abramowitz, M. and Stegun, C. A. (Eds.).  ``Orthogonal Polynomials.''  Ch. 22 in  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.  New York: Dover, pp. 771-802, 1972.Arfken, G.  ``Hermite Functions.''  §13.1 in Mathematical Methods for Physicists, 3rd ed.  Orlando, FL: Academic Press, pp. 712-721, 1985. Chebyshev, P. L.  ``Sur le développement des fonctions à une seule variable.''  Bull. ph.-math.,  Acad. Imp. Sc. St. Pétersbourg 1, 193-200, 1859. Chebyshev, P. L.  Oeuvres, Vol. 1.  New York: Chelsea, pp. 49-508, 1987. Djordjevic, G.  ``On Some Properties of Generalized Hermite Polynomials.''  Fib. Quart. 34, 2-6, 1996. Hermite, C.  ``Sur un nouveau développement en série de fonctions.''  Compt. Rend. Acad. Sci. Paris 58,  93-100 and 266-273, 1864.  Reprinted in Hermite, C.   Oeuvres complètes, Vol. 2.  Paris, pp. 293-308, 1908. Hermite, C.  Oeuvres complètes, Vol. 3.  Paris, p. 432, 1912. Iyanaga, S. and Kawada, Y. (Eds.).  ``Hermite Polynomials.''  Appendix A, Table 20.IV in  Encyclopedic Dictionary of Mathematics.  Cambridge, MA: MIT Press, pp. 1479-1480, 1980. Sansone, G.	 ``Expansions in Laguerre and Hermite Series.''  Ch. 4 in Orthogonal Functions, rev. English ed.  New York: Dover, pp. 295-385, 1991. Spanier, J. and Oldham, K. B.  ``The Hermite Polynomials  .''  Ch. 24 in An Atlas of Functions.  Washington, DC: Hemisphere, pp. 217-223, 1987. Subramanyan, P. R.  ``Springs of the Hermite Polynomials.''  Fib. Quart. 28, 156-161, 1990. Szegö, G.  Orthogonal Polynomials, 4th ed.  Providence, RI: Amer. Math. Soc., 1975.   |