请输入您要查询的字词:

 

单词 Landau-Ramanujan Constant
释义

Landau-Ramanujan Constant

N.B. A detailed on-line essay by S. Finchwas the starting point for this entry.


Let denote the number of Positive Integers not exceeding which can be expressed as a sum oftwo squares, then

(1)

as proved by Landau (1908) and stated by Ramanujan. The value of (also sometimes called ) is
(2)

(Hardy 1940, Berndt 1994). Ramanujan found the approximate value . Flajolet and Vardi (1996) give a beautifulFormula with fast convergence
(3)

where
(4)

is the Dirichlet Beta Function, and is the Hurwitz Zeta Function. Landau proved the evenstronger fact
(5)

where
 
 (6)

Here,
(7)

is the Arc Length of a Lemniscate with (the Lemniscate Constant to within a factor of 2 or 4),and is the Euler-Mascheroni Constant.


References

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 60-66, 1994.

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/lr/lr.html

Flajolet, P. and Vardi, I. ``Zeta Function Expansions of Classical Constants.'' Unpublished manuscript. 1996. http://pauillac.inria.fr/algo/flajolet/Publications/landau.ps.

Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, pp. 61-63, 1940.

Landau, E. ``Über die Einteilung der positiven ganzen Zahlen in vier Klassen nach der Mindeszahl der zu ihrer additiven Zusammensetzung erforderlichen Quadrate.'' Arch. Math. Phys. 13, 305-312, 1908.

Shanks, D. ``The Second-Order Term in the Asymptotic Expansion of .'' Math. Comput. 18, 75-86, 1964.

Shanks, D. ``Non-Hypotenuse Numbers.'' Fibonacci Quart. 13, 319-321, 1975.

Shanks, D. and Schmid, L. P. ``Variations on a Theorem of Landau. I.'' Math. Comput. 20, 551-569, 1966.

Shiu, P. ``Counting Sums of Two Squares: The Meissel-Lehmer Method.'' Math. Comput. 47, 351-360, 1986.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 7:39:34