请输入您要查询的字词:

 

单词 Latin Rectangle
释义

Latin Rectangle

A Latin rectangle is a Matrix with elements such thatentries in each row and column are distinct. If , the special case of a Latin Square results. A normalizedLatin rectangle has first row and first column . Let be the numberof normalized Latin rectangles, then the total number of Latin rectangles is


(McKay and Rogoyski 1995), where is a Factorial. Kerewala (1941) found a Recurrence Relation for, and Athreya, Pranesachar, and Singhi (1980) found a summation Formula for .


The asymptotic value of was found by Godsil and McKay (1990). The numbers of Latinrectangles are given in the following table from McKay and Rogoyski (1995). The entries and areomitted, since

 
 

but and are included for clarity. The values of are given as a ``wrap-around'' seriesby Sloane's A001009.

111
211
321
423
434
5211
5346
5456
6253
631064
646552
659408
72309
7335792
741293216
7511270400
7616942080
822119
831673792
84420909504
8527206658048
86335390189568
87535281401856
9216687
93103443808
94207624560256
95112681643083776
9612952605404381184
97224382967916691456
98377597570964258816
102148329
1038154999232
104147174521059584
105746988383076286464
106870735405591003709440
107177144296983054185922560
1084292039421591854273003520
1097580721483160132811489280

References

Athreya, K. B.; Pranesachar, C. R.; and Singhi, N. M. ``On the Number of Latin Rectangles and Chromatic Polynomial of .'' Europ. J. Combin. 1, 9-17, 1980.

Colbourn, C. J. and Dinitz, J. H. (Eds.) CRC Handbook of Combinatorial Designs. Boca Raton, FL: CRC Press, 1996.

Godsil, C. D. and McKay, B. D. ``Asymptotic Enumeration of Latin Rectangles.'' J. Combin. Th. Ser. B 48, 19-44, 1990.

Kerawla, S. M. ``The Enumeration of Latin Rectangle of Depth Three by Means of Difference Equation'' [sic]. Bull. Calcutta Math. Soc. 33, 119-127, 1941.

McKay, B. D. and Rogoyski, E. ``Latin Squares of Order 10.'' Electronic J. Combinatorics 2, N3 1-4, 1995.http://www.combinatorics.org/Volume_2/volume2.html#N3.

Ryser, H. J. ``Latin Rectangles.'' §3.3 in Combinatorial Mathematics. Buffalo, NY: Math. Assoc. of Amer., pp. 35-37, 1963.

Sloane, N. J. A. Sequence A001009in ``The On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 21:41:58