请输入您要查询的字词:

 

单词 Lebesgue Constants (Fourier Series)
释义

Lebesgue Constants (Fourier Series)

N.B. A detailed on-line essay by S. Finchwas the starting point for this entry.


Assume a function is integrable over the interval and is the th partial sum of theFourier Series of , so that

(1)
(2)

and
(3)

If
(4)

for all , then
(5)

and is the smallest possible constant for which this holds for all continuous . The first few values of are
(6)
(7)
(8)
(9)

Some Formulas for include
 
 (10)

(Zygmund 1959) and integral Formulas include
 
  
   (11)

(Hardy 1942). For large ,
(12)


This result can be generalized for an -differentiable function satisfying

(13)

for all . In this case,
(14)

where
(15)

(Kolmogorov 1935, Zygmund 1959).


Watson (1930) showed that

(16)

where
(17)
 (18)
 (19)

where is the Gamma Function, is the Dirichlet Lambda Function, and is the Euler-Mascheroni Constant.


References

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/lbsg/lbsg.html

Hardy, G. H. ``Note on Lebesgue's Constants in the Theory of Fourier Series.'' J. London Math. Soc. 17, 4-13, 1942.

Kolmogorov, A. N. ``Zur Grössenordnung des Restgliedes Fourierscher reihen differenzierbarer Funktionen.'' Ann. Math. 36, 521-526, 1935.

Watson, G. N. ``The Constants of Landau and Lebesgue.'' Quart. J. Math. Oxford 1, 310-318, 1930.

Zygmund, A. G. Trigonometric Series, 2nd ed., Vols. 1-2. Cambridge, England: Cambridge University Press, 1959.


随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/2/22 2:12:56