请输入您要查询的字词:

 

单词 Lobatto Quadrature
释义

Lobatto Quadrature

Also called Radau Quadrature (Chandrasekhar 1960). A Gaussian Quadrature with Weighting Function in which the endpoints of the interval are included in a total of Abscissas, giving freeabscissas. Abscissas are symmetrical about the origin, and the general Formula is

(1)

The free Abscissas for , ..., are the roots of the Polynomial , where is a Legendre Polynomial. The weights of the free abscissas are
(2)
 (3)

and of the endpoints are
(4)

The error term is given by
(5)

for . Beyer (1987) gives a table of parameters up to =11 and Chandrasekhar (1960) up to =9(although Chandrasekhar's for is incorrect).

301.33333
 ± 10.333333
4± 0.4472140.833333
 ± 10.166667
500.711111
 ± 0.6546540.544444
 ± 10.100000
6± 0.2852320.554858
 ± 0.7650550.378475
 ± 10.0666667

The Abscissas and weights can be computed analytically for small .

30
 
4
 
50
 
 

See also Chebyshev Quadrature, Radau Quadrature


References

Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 888-890, 1972.

Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 465, 1987.

Chandrasekhar, S. Radiative Transfer. New York: Dover, pp. 63-64, 1960.

Hildebrand, F. B. Introduction to Numerical Analysis. New York: McGraw-Hill, pp. 343-345, 1956.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 2:34:21