请输入您要查询的字词:

 

单词 Logarithmic Spiral Evolute
释义

Logarithmic Spiral Evolute


(1)

Using
(2)

gives
 
  
  
 (3)

and
 
 
 (4)

so
 
 (5)

and the Tangent Vector is given by
 
 (6)

The coordinates of the Evolute are therefore
(7)
(8)

So the Evolute is another logarithmic spiral with , as first shown by Johann Bernoulli. However, in some cases, the Evolute is identical to the original, as can bedemonstrated by making the substitution to the new variable
(9)

Then the above equations become
 
 (10)
 
 (11)

which are equivalent to the form of the original equation if
(12)


(13)


(14)

where only solutions with the minus sign in exist. Solving gives the values summarized in the following table.

10.2744106319...
20.1642700512...
30.1218322508...
40.0984064967...
50.0832810611...
60.0725974881...
70.0645958183...
80.0583494073...
90.0533203211...
100.0491732529...

References

Lauwerier, H. Fractals: Endlessly Repeated Geometric Figures. Princeton, NJ: Princeton University Press, pp. 60-64, 1991.

随便看

 

数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2024/11/15 2:44:14