单词 | Magic Cube |
释义 | Magic CubeAn A magic cube using the numbers 1, 2, ..., ![]() For ![]() ![]() ![]() The above semiperfect magic cubes of orders three (Hunter and Madachy 1975, p. 31; Ball and Coxeter 1987, p. 218) and four(Ball and Coxeter 1987, p. 220) have magic constants 42 and 130, respectively. There is a trivial semiperfect magic cube oforder one, but no semiperfect cubes of orders two or three exist. Semiperfect cubes of Odd order with ![]() There are no perfect magic cubes of order four (Beeler et al. 1972, Item 50; Gardner 1988). No perfect magic cubes of orderfive are known, although it is known that such a cube must have a central value of 63 (Beeler et al. 1972, Item 51; Gardner1988). No order-six perfect magic cubes are known, but Langman (1962) constructed a perfect magic cube of order seven. Anorder-eight perfect magic cube was published anonymously in 1875 (Barnard 1888, Benson and Jacoby 1981, Gardner 1988). Theconstruction of such a cube is discussed in Ball and Coxeter (1987). Rosser and Walker rediscovered the order-eight cube inthe late 1930s (but did not publish it), and Myers independently discovered the cube illustrated above in 1970 (Gardner 1988). Order 9 and 11 magic cubes have also been discovered, but none of order 10 (Gardner 1988). Semiperfect pandiagonal cubes exist for all orders Berlekamp et al. (1982, p. 783) give a magic Tesseract. See also Magic Constant, Magic Graph, Magic Hexagon, Magic Square
Adler, A. and Li, S.-Y. R. ``Magic Cubes and Prouhet Sequences.'' Amer. Math. Monthly 84, 618-627, 1977. Andrews, W. S. Magic Squares and Cubes, 2nd rev. ed. New York: Dover, 1960. Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, pp. 216-224, 1987. Barnard, F. A. P. ``Theory of Magic Squares and Cubes.'' Mem. Nat. Acad. Sci. 4, 209-270, 1888. Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972. Benson, W. H. and Jacoby, O. Magic Cubes: New Recreations. New York: Dover, 1981. Berlekamp, E. R.; Conway, J. H; and Guy, R. K. Winning Ways, For Your Mathematical Plays, Vol. 2: Games in Particular. London: Academic Press, 1982. Gardner, M. ``Magic Squares and Cubes.'' Ch. 17 in Time Travel and Other Mathematical Bewilderments. New York: W. H. Freeman, pp. 213-225, 1988. Hendricks, J. R. ``Ten Magic Tesseracts of Order Three.'' J. Recr. Math. 18, 125-134, 1985-1986. Hirayama, A. and Abe, G. Researches in Magic Squares. Osaka, Japan: Osaka Kyoikutosho, 1983. Hunter, J. A. H. and Madachy, J. S. ``Mystic Arrays.'' Ch. 3 in Mathematical Diversions. New York: Dover, p. 31, 1975. Langman, H. Play Mathematics. New York: Hafner, pp. 75-76, 1962. Lei, A. ``Magic Cube and Hypercube.'' http://www.cs.ust.hk/~philipl/magic/mcube2.html. Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, pp. 99-100, 1979. Pappas, T. ``A Magic Cube.'' The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 77, 1989. Planck, C. Theory of Path Nasiks. Rugby, England: Privately Published, 1905. Rosser, J. B. and Walker, R. J. ``The Algebraic Theory of Diabolical Squares.'' Duke Math. J. 5, 705-728, 1939. Sloane, N. J. A. Sequence A027441in ``The On-Line Version of the Encyclopedia of Integer Sequences.''http://www.research.att.com/~njas/sequences/eisonline.html. Wynne, B. E. ``Perfect Magic Cubes of Order 7.'' J. Recr. Math. 8, 285-293, 1975-1976. |
随便看 |
|
数学辞典收录了8975条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。