请输入您要查询的字词:

 

单词 HeavisideFormula
释义

Heaviside formula


Let P(s) and Q(s) be polynomialsMathworldPlanetmathPlanetmath with the degree of the former less than the degree of the latter.

  • If all complex zeroes (http://planetmath.org/Zero) a1,a2,,an of Q(s) are simple, then

    -1{P(s)Q(s)}=j=1nP(aj)Q(aj)eajt.(1)
  • If the different zeroes a1,a2,,an of Q(s)have the multiplicities m1,m2,,mn, respectively,we denote  Fj(s):=(s-aj)mjP(s)/Q(s);  then

    -1{P(s)Q(s)}=j=1neajtk=0mj-1Fj(k)(aj)tmj-1-kk!(mj-1-k)!.(2)

A special case of the Heaviside formula (1) is

-1{Q(s)Q(s)}=j=1neajt.(3)

Example.  Since the zeros of the binomial s4+4a4 are  s=(±1±i)a,  wecan calculate by (3) as follows:

-1{s3s4+4a4}=14-1{4s3s4+4a4}=14±e(±1±i)at=eat+e-at2eiat+e-iat2=coshatcosat

Proof of (1).  Without hurting the generality, we cansuppose that Q(s) is monic.  Therefore

Q(s)=(s-a1)(s-a2)(s-sn).

For  j=1,2,,n,  denoting

Q(s):=(s-aj)Qj(s),

one has  Qj(aj)0.  We have a partial fractionexpansion of the form

P(s)Q(s)=C1s-a1+C2s-a2++Cns-an(4)

with constants Cj.  According to the linearity and theformula 1 of the parent entry (http://planetmath.org/LaplaceTransform),one gets

-1{P(s)Q(s)}=j=1nCjeajt.(5)

For determining the constants Cj, multiply (3) bys-aj.  It yields

P(s)Qj(s)=Cj+(s-aj)νjCνs-aν.

Setting to this identityPlanetmathPlanetmaths:=aj  gives the value

Cj=P(aj)Qj(aj).(6)

But since  Q(s)=dds((s-aj)Qj(s))=Qj(s)+(s-aj)Qj(s), we see that  Q(aj)=Qj(aj);  thus the equation (5) maybe written

Cj=P(aj)Q(aj).(7)

The values (6) in (4) produce the formula (1).

References

  • 1 K. Väisälä: Laplace-muunnos.  Handout Nr. 163. Teknillisen korkeakoulun ylioppilaskunta, Otaniemi, Finland (1968).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 16:28:13