请输入您要查询的字词:

 

单词 HermiteEquation
释义

Hermite equation


The linear differential equation

d2fdz2-2zdfdz+2nf= 0,

in which n is a real , is called the Hermite equation.  Its general solution is  f:=Af1+Bf2  with A and B arbitrary and the functionsMathworldPlanetmath f1 and f2 presented as

f1(z):=z+2(1-n)3!z3+22(1-n)(3-n)5!z5+23(1-n)(3-n)(5-n)7!z7+,

f2(z):= 1+2(-n)2!z2+22(-n)(2-n)4!z4+23(-n)(2-n)(4-n)6!z6+

It’s easy to check that these power seriesMathworldPlanetmath satisfy the differential equation.  The coefficients bν in both series obey the recurrence

bν=2(ν-2-n)ν(nu-1)bν-2.

Thus we have the radii of convergence (http://planetmath.org/RadiusOfConvergence)

R=limν|bν-2bν|=limνν21-1/ν1-(n+2)/ν=.

Therefore the series converge in the whole complex planeMathworldPlanetmath and define entire functionsMathworldPlanetmath.

If the n is a non-negative integer, then one of f1 and f2 is simply a polynomial function.  The polynomial solutions of the Hermite equation are usually normed so that the highest degree (http://planetmath.org/PolynomialRing) is (2z)n and called the Hermite polynomialsDlmfDlmfDlmfMathworldPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/25 14:52:09