请输入您要查询的字词:

 

单词 UltrametricTriangleInequality
释义

ultrametric triangle inequality


Theorem 1.

Let K be a field and G an ordered group equipped with zero.  Suppose that the function  ||:KG  satisfies the postulates 1 and 2 of Krull valuation.  Then the non-archimedean or ultrametric triangle inequality

3.     |x+y|max{|x|,|y|}

in the field is with the condition

(*) |x|1|x+1|1.

Proof.  The value  y=1  in the ultrametric triangle inequality gives the (*) as result.  Secondly, let’s assume the condition (*).  Let x and y be non-zero elements of the field K (if  xy=0  then 3 is at once verified), and let e.g.  |x||y|.  Then we get |xy|=|x||y|-11,  and thus according to (*),

|x+y||y|-1=|x+yy|=|xy+1|1.

So we see that  |x+y||y|=max{|x|,|y|}.

Theorem 2.

The Krull valuation (and any non-archimedean valuation (http://planetmath.org/Valuation))  ||  of the field K satisfies the sharpening

|x+y|=max{|x|,|y|}for|x||y|

of the ultrametric triangle inequality.

Proof.  Let e.g.  |x|>|y|.  Surely  |x+y||x|,  but also  |x|=|(x+y)-y|max{|x+y|,|y|};  this maximum is |x+y| since otherwise one would have  |x||y|.  Thus the result is:  |x+y|=|x|.

Note.  The metric defined by a non-archimedean valuation of the field K is the ultrametric of K.  Theorem 2 implies, that every triangle of K with vertices A, B, C (K) is isosceles:  if  |B-C||C-A|,  then  |A-B|=max{|B-C|,|C-A|}.

Theorem 3.

The valuation (http://planetmath.org/Valuation)  ||:K  of the field K is archimedeanPlanetmathPlanetmathPlanetmath if and only if the set

{|1|,|1+1|,|1+1+1|,}

of the “values” of the multiplesMathworldPlanetmathPlanetmath of the unity is not boundedPlanetmathPlanetmathPlanetmathPlanetmath.

Proof.  If || is non-archimedean, then  |n1|=|1++1|max{|1|}=1,  and the multiples are bounded.  Conversely, let |n1|<Mn+.  Now one obtains, when  |x|1:

|x+1|nj=0n|(nj)||x|j<(n+1)M,

or  |x+1|<(n+1)Mn   for all n.  As n tends to infinity, this nth root has the limit 1.  Therefore one gets the limit inequality  |x+1|1,  i.e. the valuation is non-archimedean.

References

  • 1 Emil Artin: Theory of Algebraic NumbersMathworldPlanetmath.  Lecture notes.  Mathematisches Institut, Göttingen (1959).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 3:46:40