请输入您要查询的字词:

 

单词 HeronianMeanIsBetweenGeometricAndArithmeticMean
释义

Heronian mean is between geometric and arithmetic mean


TheoremMathworldPlanetmath.  For non-negative numbers x and y, the inequalitiesMathworldPlanetmath

xyx+xy+y3x+y2

are in , i.e. the Heronian meanMathworldPlanetmath is always at least equal to the geometric mean and at most equal to the arithmetic meanMathworldPlanetmath.  The equality signs are true if and only if  x=y.

Proof.
1.

xyx+xy+y33xyx+xy+y
2xyx+y
4xyx2+2xy+y2
0x2-2xy+y2
0(x-y)2

2.

x+xy+y3x+y22x+2xy+2y3x+3y
2xyx+y
4xyx2+2xy+y2
0(x-y)2

All inequalities of both chains are equivalentMathworldPlanetmathPlanetmathPlanetmathPlanetmath (http://planetmath.org/Equivalent3) since x and y are non-negative.  As for the equalities, the chains are valid with the mere equality signs.

TitleHeronian mean is between geometric and arithmetic mean
Canonical nameHeronianMeanIsBetweenGeometricAndArithmeticMean
Date of creation2013-03-22 17:49:14
Last modified on2013-03-22 17:49:14
Ownerpahio (2872)
Last modified bypahio (2872)
Numerical id10
Authorpahio (2872)
Entry typeTheorem
Classificationmsc 26B99
Classificationmsc 26D07
Classificationmsc 01A20
Classificationmsc 00A05
SynonymHeronian mean inequalities
Related topicArithmeticGeometricMeansInequality
Related topicComparisonOfPythagoreanMeans
Related topicSquareOfSum
Related topicEquivalent3
Related topicHeronsPrinciple
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/3 13:57:18