请输入您要查询的字词:

 

单词 HigherOrderDerivativesOfSineAndCosine
释义

higher order derivatives of sine and cosine


One may consider the sine and cosine either as real (http://planetmath.org/RealFunction) or complex functions.  In both cases they are everywhere smooth, having the derivatives of all orders (http://planetmath.org/OrderOfDerivative) in every point.  The formulae

dndxnsinx=sin(x+nπ2)

and

dndxncosx=cos(x+nπ2),

where  n=0, 1, 2, (the derivative of the 0th order means the functionMathworldPlanetmath itself), can be proven by induction on n.  Another possibility is to utilize Euler’s formula, obtaining

dndxncosx+idndxnsinx=dndxneix=eixin=eix+inπ2=cos(x+nπ2)+isin(x+nπ2);

here one has to compare the real (http://planetmath.org/ComplexFunction) and imaginary partsDlmfPlanetmath – supposing that x is real.

Titlehigher order derivatives of sine and cosine
Canonical nameHigherOrderDerivativesOfSineAndCosine
Date of creation2013-03-22 14:45:16
Last modified on2013-03-22 14:45:16
Ownerpahio (2872)
Last modified bypahio (2872)
Numerical id13
Authorpahio (2872)
Entry typeDerivation
Classificationmsc 26B05
Classificationmsc 46G05
Classificationmsc 26A24
Related topicFractionalDifferentiation
Related topicHigherOrderDerivatives
Related topicExampleOfTaylorPolynomialsForSinX
Related topicCosineAtMultiplesOfStraightAngle
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:44:18