请输入您要查询的字词:

 

单词 HNNExtension
释义

HNN extension


The HNN extension group G for a group A, is constructed from a pair of isomorphicPlanetmathPlanetmathPlanetmath subgroupsMathworldPlanetmathPlanetmath BϕC in A, according to formula

G=A*t|-N

wheret|- is a cyclic free groupMathworldPlanetmath, * is the free productMathworldPlanetmath and N is the normal closurePlanetmathPlanetmath of {tbt-1ϕ(b)-1:bB}.

As an example take a surface bundle FES1, hence the homotopyMathworldPlanetmathPlanetmath long exact sequence of this bundle implies that the fundamental groupMathworldPlanetmathPlanetmath π1(E) is given by

π1(E)=x1,,xk,t|Π=1,txit-1=ϕ(xi)

where k is the genus of the surface and the relationPlanetmathPlanetmathPlanetmath Π is [x1,x2][x3,x4][xk-1,xk] for an orientable surface or x12x22xk2 is for a non-orientable one. ϕ is an isomorphismMathworldPlanetmathPlanetmathPlanetmath induced by a self homeomorphism of F.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 20:12:49