请输入您要查询的字词:

 

单词 HomologyOfTheSphere
释义

homology of the sphere


Every loop on the sphere S2 is contractibleMathworldPlanetmath to a point, so its fundamental groupMathworldPlanetmathPlanetmath, π1(S2), is trivial.

Let Hn(S2,) denote the n-th homology groupMathworldPlanetmath of S2. We can compute all of these groups using the basic results from algebraic topology:

  • S2 is a compact orientable smooth manifoldMathworldPlanetmath, so H2(S2,)=;

  • S2 is connected, so H0(S2,)=;

  • H1(S2,) is the abelianizationMathworldPlanetmath of π1(S2), so it is also trivial;

  • S2 is two-dimensional, so for k>2, we have Hk(S2,)=0

In fact, this pattern generalizes nicely to higher-dimensional spheres:

Hk(Sn,)={k=0,n0else

This also provides the proof that the hyperspheresMathworldPlanetmath Sn and Sm are non-homotopic for nm, for this would imply an isomorphismMathworldPlanetmathPlanetmathPlanetmathPlanetmathPlanetmath between their homologiesMathworldPlanetmathPlanetmath.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 6:04:22