请输入您要查询的字词:

 

单词 HyperbolicFunctions
释义

hyperbolic functions


The hyperbolic functionsDlmfMathworldPlanetmath sinh (sinus hyperbolicus) and cosh (cosinus hyperbolicus) with arbitrary complex argument x are defined as follows:

sinhx:=ex-e-x2,
coshx:=ex+e-x2.

One can then also also define the functionsMathworldPlanetmath tanh (tangens hyperbolica) and coth (cotangens hyperbolica) in analogy to the definitions of tan and cot:

tanhx:=sinhxcoshx=ex-e-xex+e-x,
cothx:=coshxsinhx=ex+e-xex-e-x.

We further define the sech and csch:

sechx:=1coshx=2ex+e-x,
cschx:=1sinhx=2ex-e-x,

where coshx resp. sinhx is not 0.

Figure 1: Graphs of the hyperbolic functions.

The hyperbolic functions are named in that way because the hyperbola

x2a2-y2b2=1

can be written in parametrical form with the equations:

x=acosht,y=bsinht.

This is because of the equation

cosh2x-sinh2x=1.

There are also addition formulasPlanetmathPlanetmath which are like the ones for trigonometric functionsDlmfMathworldPlanetmath:

sinh(x±y)=sinhxcoshy±coshxsinhy
cosh(x±y)=coshxcoshy±sinhxsinhy.

The Taylor seriesMathworldPlanetmath for the hyperbolic functions are:

sinhx=n=0x2n+1(2n+1)!
coshx=n=0x2n(2n)!.

There are the following between the hyperbolic and the trigonometric functions:

sinx=sinh(ix)i
cosx=cosh(ix).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:45:18