请输入您要查询的字词:

 

单词 HyperkahlerManifold
释义

hyperkähler manifold


Definition:Let M be a smooth manifoldMathworldPlanetmath, and I,J,K End(TM)endomorphismsPlanetmathPlanetmath of the tangent bundle satisfying thequaternionic relation

I2=J2=K2=IJK=-IdTM.

The manifold (M,I,J,K) is called hypercomplexif the almost complex structuresMathworldPlanetmath I, J, Kare integrable. If, in addition, Mis equipped with a Riemannian metric g whichis Kähler with respect to I,J,K, themanifold (M,I,J,K,g) is called hyperkähler.

Since g is Kähler with respect to(I,J,K), we have

I=J=K=0

where denotes the Levi-Civita connectionMathworldPlanetmath.This means that the holonomy of lies insidethe group Sp(n) of quaternionic-Hermitianendomorphisms. The converse is also true: aRiemannian manifold is hyperkähler if and onlyif its holonomy is contained in Sp(n).This definition is standard in differentialgeometry.

In physics literature, one sometimes assumesthat the holonomy of a hyperkähler manifold isprecisely Sp(n), and not its propersubgroupMathworldPlanetmath. In mathematics, such hyperkählermanifolds are called simple hyperkähler manifolds.

The following splitting theorem (due to F. Bogomolov)is implied by Berger’s classification of irreduciblePlanetmathPlanetmathholonomies.

Theorem: Any hyperkählermanifold has a finite covering which is a productof a hyperkähler torus and several simplehyperkähler manifolds.

Consider the Kähler forms ωI,ωJ,ωKon M:

ωI(,):=g(,I),ωJ(,):=g(,J),ωK(,):=g(,K).

An elementary linear-algebraic calculation impliesthat the 2-form ωJ+-1ωK is of Hodge type (2,0)on (M,I). This form is clearly closed andnon-degenerate, hence it is a holomorphicsymplectic formMathworldPlanetmath.

In algebraic geometryMathworldPlanetmathPlanetmath, the word “hyperkähler”is essentially synonymous with “holomorphicallysymplectic”, due to the following theorem, which isimplied by Yau’s solution of Calabi conjecture(the famous Calabi-Yau theorem).

Theorem: Let (M,I) be a compactPlanetmathPlanetmath, Kähler, holomorphicallysymplectic manifold. Then there exists a uniquehyperkähler metric on (M,I) with the same Kähler class.

Remark:The hyperkähler metric is unique, but there couldbe several hyperkähler structures compatible witha given hyperkähler metric on (M,I).

References

  • Bea Beauville, A. Varietes Kähleriennes dont la première classe de Chern estnulle. J. Diff. Geom. 18, pp. 755-782 (1983).
  • Bes Besse,A., Einstein Manifolds, Springer-Verlag, New York (1987)
  • Bo1 Bogomolov, F. On the decomposition ofKähler manifolds with trivial canonical class, Math. USSR-Sb.22 (1974), 580-583.
  • Y Yau, S. T., On the Ricci curvature of a compact Kähler manifoldand the complex Monge-Ampère equation I. Comm. on Pure and Appl.Math. 31, 339-411 (1978).
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:24:23