请输入您要查询的字词:

 

单词 InequalityOfLogarithmicAndAsymptoticDensity
释义

inequality of logarithmic and asymptotic density


For any A we denoteA(n):=|A{1,2,,n}| and S(n):=k=1n1k.

Recall that the values

d¯(A)=lim infnA(n)n  d¯(A)=lim supnA(n)n

are called lower and upper asymptotic density of A.

The values

δ¯(A)=lim infnkA;kn1kS(n)  δ¯(A)=lim supnkA;kn1kS(n)

are calledlower and upper logarithmic density of A.

We have S(n)lnn (we use the Landau notationMathworldPlanetmathPlanetmath). Thisfollows from the fact that limnS(n)-lnn=γ is Euler’sconstant. Therefore we can use lnn instead of S(n) in thedefinition of logarithmic density as well.

The sum in the definition of logarithmic density can be rewrittenusing Iverson’s convention as k=1n1k[kA].(This means that we only add elements fulfilling the conditionkA. This notation is introduced in [1, p.24].)

Theorem 1.

For any subset AN

d¯(A)δ¯(A)δ¯(A)d¯(A)

holds.

Proof.

We first observe that

1k[kA]=A(k)-A(k-1)k,
D(n):=k=1n1k[kA]=A(n)n+k=1n-1A(k)k(k+1)

There exists an n0 such that for each nn0 it holdsd¯(A)-εA(n)nd¯(A)+ε.

We denote C:=1+S(n0). For nn0 we get

D(n)C+k=n0n-1A(k)k1k+1C+(d¯(A)+ε)k=n0n-11k+1(d¯(A)+ε)lnn,
δ¯(A)=lim supnD(n)lnnd¯(A)+ε.

This inequalityMathworldPlanetmath holds for any ε>0, thus δ¯(A)d¯(A).

For the proof of the inequality for lower densities we putC:=k=1n0-1A(k)k(k+1)-(d¯(A)-ε)S(n0).We get

D(n)C+(d¯(A)-ε)S(n0)+(d¯(A)-ε)k=n0n1k+1=C+(d¯(A)-ε)S(n)(d¯(A)-ε)lnn

and this implies δ¯(A)d¯(A).∎

For the proof using Abel’s partial summation see [4]or [5].

Corollary 1.

If a set has asymptotic density, then it has logarithmic density,too.

A well-known example of a set having logarithmic density but nothaving asymptotic density is the set of all numbers with the firstdigit equal to 1.

It can be moreover proved, that for any real numbers 0α¯β¯β¯α¯1 thereexists a set A such that d¯(A)=α¯,δ¯(A)=β¯, δ¯(A)=β¯ and d¯(A)=α¯ (see [2]).

References

  • 1 R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete mathematics. A foundation for computer science. Addison-Wesley, 1989.
  • 2 L. Mišík. Sets of positive integers with prescribed values of densities. Mathematica Slovaca, 52(3):289–296, 2002.
  • 3 H. H. Ostmann. Additive Zahlentheorie I. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.
  • 4 J. Steuding. http://www.math.uni-frankfurt.de/~steuding/steuding/prob.pdfProbabilistic number theory.
  • 5 G. Tenenbaum. Introduction to analytic and probabilistic number theory. Cambridge Univ. Press, Cambridge, 1995.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 15:26:05