请输入您要查询的字词:

 

单词 IntegrationOfLaplaceTransformWithRespectToParameter
释义

integration of Laplace transform with respect to parameter


We use the curved from the Laplace-transformed functionsMathworldPlanetmath to the corresponding initial functions.

If

f(t,x)F(s,x),

then one can integrate both functions with respect to the parametre x between the same which may be also infinite provided that the integrals converge:

abf(t,x)𝑑xabF(s,x)𝑑x(1)

(1) may be written as

{abf(t,x)𝑑x}=ab{f(t,x)}𝑑x.(2)

Proof.  Using the definition of the Laplace transformDlmfMathworldPlanetmath, we can write

abf(t,x)𝑑x0(e-stabf(s,x)𝑑x)𝑑t=0(abe-stf(s,x)𝑑x)𝑑t.

We change the of integration in the last double integral and use again the definition, obtaining

abf(t,x)𝑑xab(0e-stf(s,x)𝑑t)𝑑x=abF(s,t)𝑑x,

Q.E.D.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/5 0:17:29