请输入您要查询的字词:

 

单词 VectorProperties1
释义

Vector Properties


Vector PropertiesSwapnil Sunil JainJuly 18, 2006

Vector Properties

Some Unconventional Syntax:

Axe^x+Aye^y+Aze^z=Axe^x+Aye^y+Aϕe^z
dxdy=dxdy
dxdydz=dxdydz
t1t2𝑑tf(t)g(t)=t1t2f(t)g(t)𝑑t
x=x
dΣ=material surface element
f(r)=f(x,y,z)
𝔼3=3

Definitions:

ABi=13AiBi
A×B|𝕖^𝕩𝕖^𝕪𝕖^𝕫AxAyAzBxByBz|
[A,B,C]A(B×C)=(A×B)C=|AxAyAzBxByBzCxCyCz|
Δ2(Laplace operator or Laplacian)
22-1c2t2(D’Alembert or wave operator or D’Alembertian)
2A(A)-×(×A)=(2Ax,2Ay,2Az)=Ax+Ay+Az(Vector Laplacian)
A(a1x1+a2x2++anxn)
F=0F is incompressible or solenoidal or divergence-free
×F=0F is irrotational or conservative or curl-free
laplacian(F)div(grad(F))
Duffu^  (Directional Derivative)
rotuFcurl(F)u^  (Rotational Derivative)
helicity(F)curl(F)F
F=limδV01δVδSFn^𝑑S
(×F)n=limδS01δSδCFt^𝑑s
×F=limδV01δVδSn^×F𝑑S
f=limδV01δVδSn^f𝑑S
ie^ihivi
ie^ihivi
×ie^ihi×vi

Gradient, Divergence and Curl in Curvilinear Coordinates

f=1h1fu1e^1+1h2fu2e^2+1h3fu3e^3
F=1h1h2h3[u1(h2h3F1)+u2(h1h3F2)+u3(h1h2F3)]
2f=1h1h2h3[u1(h2h3h1fu1)+u2(h1h3h2fu2)+u3(h1h2h3fu3)]
×F=1h1h2h3|h1e^1h2e^2h3e^3u1u2u3h1F1h2F2h3F3|
For Cartesian coordinates: hx=hy=hz=1
For Cylindrical coordinates: hr=1,hϕ=r,hz=1
For Spherical coordinates: hr=1,hθ=r,hϕ=rsin(θ)
f=i1hifqie^i
×F=1Ωie^ijkϵijkhi(hkFk)qj
F=i1Ωqi(ΩFihi)
2f=1Ωiqi(Ωhi2fqi)
where ΩΠhi

InequalitiesMathworldPlanetmath:

u+vu+v  Triangle Inequality
|uv|uv  Cauchy-Schwarz Inequality

Product identities:

A(B×C)=B(C×A)=C(A×B)  Scalar Triple Product
A×(B×C)=B(AC)-C(AB)  Vector Triple Product
A×(B×C)+B×(C×A)+C×(A×B)=0  Jacobi Identity
(A×B)(C×D)=A[B×(C×D)]=(AC)(BD)-(BC)(AD)Scalar Quadruple Product
(A×B)×(C×D)=(A×BD)C-(A×BC)D=[C,D,A]B-[C,D,B]AVector Quadruple Product
A×[B×(C×D)]=(A×C)(BD)-(BC)(A×D)

Gradient Identities:

(f+g)=f+g
(fg)=fg+gf
(AB)=A×(×B)+B×(×A)+(A)B+(B)A
(A×B)=(A)×B-(B)×A  gradient of vector??
(fA)=(f)A+f(A)  gradient of vector??

Divergence Identities:

(A+B)=A+B
(fA)=f(A)+A(f)
(A×B)=B(×A)-A(×B)
(AB)=(A)B+A(B)=(A)B+(A)B

Curl Identities:

×(A+B)=×A+×B
×(fA)=f(×A)-A×(f)
×(A×B)=(B)A-(A)B+(B)A-(A)B
×(AB)=(A)B-A×(B)

Laplacian Identities:

2(fg)=g2f+2fg+f2g
2(fA)==f2A+A2f+2(f)A

Mixed Identities:

(×A)=0
×f=0
×(fg)=f×g
fg=f2g+fg
×(×A)=(A)-2Aonly true for rectangular coordinates

DifferentialMathworldPlanetmath Identities:

ddt(fA)=fdAdt+dfdtA
ddt(AB)=AdBdt+BdAdt
ddt(A×B)=A×dBdt+B×dAdt

Integral Identities:

Gauss’/Divergence Thm:

Standard Form:

𝒮F𝑑A=𝒱(F)𝑑V(𝒮encloses𝒱)

Variants:

𝒮Fn𝑑S=𝒱(F)𝑑V(𝒮encloses𝒱)

Stokes’ Thm:

Standard Form:

𝒞F𝑑l=𝒮(×F)n𝑑S(𝒮boundedby𝒞)

Variants:

𝒞F𝑑l=𝒮(×F)𝑑A(𝒮boundedby𝒞)
𝒞Ft𝑑s=𝒮(×F)n𝑑S(𝒮boundedby𝒞)
𝒞Ft𝑑s=𝒮(×F)𝑑A(𝒮boundedby𝒞)

Gradient theorem:

Standard Form:

𝒞(f)𝑑l=f(r2)-f(r1)(𝒞goesfromr1tor2)

Integration by Parts for Vectors

𝒱f(A)𝑑V=𝒮fA𝑑a-𝒱A(f)𝑑V

Integral Form of Maxwell’s Equations:

𝒮Dn^d2A=Qfreeenc
𝒮Bn^d2A=0
𝒞E𝑑l=-dΦBdt
𝒞H𝑑l=Ifreeenc+dΦDdt
ΦB=𝒮Bn^d2A
ΦD=𝒮Dn^d2A

Differential FormMathworldPlanetmath of Maxwell’s Equations:

D=ρfree
B=0
×E=-Bt
×H=Jfree+Dt

Complex Differential Form of Maxwell’s Equations:

M=iρϵo
×M=cμ0J-icMt
where McB+iE

EM Equations:

2A-1c22At2=-μ0J  Vector Poisson’s Equation
2V-1c22Vt2=-ρϵ  Scalar Poisson’s Equation
A(r)=μ04πJ(r)|r-r|d3r
ϕ(r)=14πϵ0ρ(r)|r-r|d3r
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 23:04:59