请输入您要查询的字词:

 

单词 AdjointRepresentation
释义

adjoint representation


\\DeclareMathOperator\\ad

ad\\DeclareMathOperator\\EndEnd

Let \\mathfrakg be a Lie algebraMathworldPlanetmath. For every a\\mathfrakg we define the, a.k.a. the adjoint action,

\\ad(a):\\mathfrakg\\mathfrakg

to be the linear transformation withaction

\\ad(a):b[a,b],b\\mathfrakg.

For any vector spaceMathworldPlanetmath V, we use \\mathfrakgl(V) to denote the Lie algebraof \\EndV determined by the commutator bracket. So\\mathfrakgl(V)=\\EndV as vector spaces, only the multiplications are different.

In this notation, treating \\mathfrakg as a vector space, the linear mapping \\ad:\\mathfrakg\\mathfrakgl(\\mathfrakg) with action

a\\ad(a),a\\mathfrakg

is called the adjoint representation of \\mathfrakg. The fact that\\ad defines a representationPlanetmathPlanetmath is a straight-forward consequence ofthe Jacobi identityMathworldPlanetmath axiom. Indeed, let a,b\\mathfrakg be given. Wewish to show that

\\ad([a,b])=[\\ad(a),\\ad(b)],

where the bracket on the left is the\\mathfrakg multiplication structureMathworldPlanetmath, and the bracket on the right is thecommutator bracket. For all c\\mathfrakg the left hand side maps c to

[[a,b],c],

while the right hand side maps c to

[a,[b,c]]+[b,[a,c]].

Taking skew-symmetry of the bracket as agiven, the equality of these two expressions is logically equivalentto the Jacobi identity:

[a,[b,c]]+[b,[c,a]]+[c,[a,b]]=0.
随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:08:47