请输入您要查询的字词:

 

单词 IrreducibilityOfBinomialsWithUnityCoefficients
释义

irreducibility of binomials with unity coefficients


Let n be a positive integer.  We consider the possible factorization of the binomialMathworldPlanetmath xn+1.

  • If n has no odd prime factors, then the binomial xn+1 is irreducible (http://planetmath.org/Irreducible PolynomialMathworldPlanetmath).  Thus, x+1, x2+1, x4+1, x8+1 and so on are irreducible polynomials (i.e. in the field of their coefficientsMathworldPlanetmath).  N.B., only x+1 and x2+1 are in the field ; e.g. one has  x4+1=(x2-x2+1)(x2+x2+1).

  • If n is an odd numberMathworldPlanetmathPlanetmath, then xn+1 is always divisible by x+1:

    xn+1=(x+1)(xn-1-xn-2+xn-3-+-x+1)(1)

    This is usable when n is an odd prime number, e.g.

    x5+1=(x+1)(x4-x3+x2-x+1).
  • When n is not a prime numberMathworldPlanetmath but has an odd prime factor p, say n=mp,  then we write  xn+1=(xm)p+1  and apply the idea of (1); for example:

    x12+1=(x4)3+1=(x4+1)[(x4)2-x4+1]=(x4+1)(x8-x4+1)

There are similar results for the binomial xn+yn, and the corresponding to (1) is

xn+yn=(x+y)(xn-1-xn-2y+xn-3y2-+-xyn-2+yn),(2)

which may be verified by performing the multiplication on the right hand .

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 19:51:29