请输入您要查询的字词:

 

单词 ProofOfAdditiveFormOfHilbertsTheorem90
释义

proof of additive form of Hilbert’s theorem 90


Set n=[L:K].

First, let there be xL such that y=x-σ(x). Then

Tr(y)=(x-σ(x))+(σ(x)-σ2(x))++(σn-1(x)-σn(x))=0

because x=σn(x).

Now, let Tr(y)=0. Choose zL with Tr(z)0. Then there exists xL with

xTr(z)=yσ(z)+(y+σ(y))σ2(z)++(y+σ(y)++σn-1(y))σn-1(z).

Since Tr(z)K we have

σ(x)Tr(z)=σ(y)σ2(z)+(σ(y)+σ2(y))σ3(z)++(σ(y)++σn-2)σn-1(z)+(σ(y)++σn-1(y))σn(z).

Now remember that Tr(y)=0. We obtain

(x-σ(x))Tr(z)=yσ(z)+(y+σ(y))σ2(z)++(y+σ(y)++σn-1(y))σn-1(z)
-σ(y)σ2(z)-(σ(y)+σ2(y))σ3(z)--(σ(y)++σn-2)σn-1(z)+yz
=yTr(z),

so y=x-σ(x), as we wanted to show.

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 1:38:18