请输入您要查询的字词:

 

单词 IteratedLimitInmathbbR2
释义

iterated limit in 2


Let f be a functionMathworldPlanetmath from a subset S of  2  to  and  (a,b)  an accumulation pointMathworldPlanetmathPlanetmath of S. The limits

limxa(limybf(x,y))andlimyb(limxaf(x,y))

are called iterated limits.

Example 1. If  f(x,y):=xsin1x+yx+y,  then

  • limx0(limy0f(x,y))=limx0sin1x does not exist

  • limy0(limx0f(x,y))=limy01=1

  • the usual limit lim(x,y)(0,0)f(x,y) does not exist.

Example 2. If  f(x,y):=x2x2+y2,  then

  • limx0(limy0f(x,y))=limx0x2x2=1

  • limy0(limx0f(x,y))=limy00=0

  • the usual limit lim(x,y)(0,0)f(x,y) again does not exist, though both of the iterated limits do.

So far we have studied examples that present discontinuity at its point of accumulation. We now expose an illustrative example where such discontinuity can be avoided.

Example 3. Consider the function

f(x,y):=xsinxcoshy+ycosxsinhyx2+y2;

then (we apply l’Hôpital’s rule (http://planetmath.org/LHpitalsRule) throughout)

  • limx0(limy0f(x,y))=limx0(limy0xsinxcoshy+ycosxsinhyx2+y2)=limx0xsinxx2=limx0sinxx=limx0cosx=1

  • limy0(limx0f(x,y))=limy0(limx0xsinxcoshy+ycosxsinhyx2+y2)=limy0ysinhyy2=limy0sinhyy=limy0coshy=1

  • the usual limit lim(x,y)(0,0)f(x,y) exists in this case. An essential reason which assures the continuity of this function, arises from the fact that  f(x,y)(sinzz),  z=x+iy,  i.e. it is the real partDlmfPlanetmath of the analytic functionMathworldPlanetmathw:=sinzz  having the removable singularity at  z=0 (see the entry complex sine and cosine).

随便看

 

数学辞典收录了18232条数学词条,基本涵盖了常用数学知识及数学英语单词词组的翻译及用法,是数学学习的有利工具。

 

Copyright © 2000-2023 Newdu.com.com All Rights Reserved
更新时间:2025/5/4 10:21:57