Faà di Bruno’s formula
Faà di Bruno’s formula is a generalization
of the chain rule
to higher order derivatives which expresses the derivative
of acomposition
of functions as a series of products
of derivatives:
This formula was discovered by Francesco Faà di Bruno in the 1850s and canbe proved by induction on the order of the derivative.
References
- 1 Faà di Bruno, C. F.. “Sullo sviluppo delle funzione.” Ann. diScienze Matem. et Fisiche di Tortoloni 6 (1855): 479-480
- 2 Faà di Bruno, C. F.. “Note sur un nouvelle formule de calcul différentiel.” Quart. J. Math. 1 (1857): 359-360
- 3 H. Figueroa & J. M. Gracia-Bondía, “Combinatorial Hopf Algebras in Quantum Field Theory I” Rev. Math. Phys. 17 (2005): 881 - 975